Subleading Regge limit from a soft anomalous dimension

Abstract

Wilson lines capture important features of scattering amplitudes, for example soft effects relevant for infrared divergences, and the Regge limit. Beyond the leading power approximation, corrections to the eikonal picture have to be taken into account. In this paper, we study such corrections in a model of massive scattering amplitudes in \( \mathcal{N}=4 \) super Yang-Mills, in the planar limit, where the mass is generated through a Higgs mechanism. Using known three-loop analytic expressions for the scattering amplitude, we find that the first power suppressed term has a very simple form, equal to a single power law. We propose that its exponent is governed by the anomalous dimension of a Wilson loop with a scalar inserted at the cusp, and we provide perturbative evidence for this proposal. We also analyze other limits of the amplitude and conjecture an exact formula for a total cross-section at high energies.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014) 114 [arXiv:1404.2922] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    A. Luna, S. Melville, S.G. Naculich and C.D. White, Next-to-soft corrections to high energy scattering in QCD and gravity, JHEP 01 (2017) 052 [arXiv:1611.02172] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    I. Moult, I.W. Stewart and G. Vita, A subleading operator basis and matching for ggH, JHEP 07 (2017) 067 [arXiv:1703.03408] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. [9]

    Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. [10]

    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. [11]

    L.F. Alday, J.M. Henn, J. Plefka and T. Schuster, Scattering into the fifth dimension of N = 4 super Yang-Mills, JHEP 01 (2010) 077[arXiv:0908.0684] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. [12]

    S. Caron-Huot and J.M. Henn, Solvable relativistic hydrogenlike system in supersymmetric Yang-Mills theory, Phys. Rev. Lett. 113 (2014) 161601 [arXiv:1408.0296] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    J. Bartels and M. Lublinsky, Quark anti-quark exchange in γ * γ * scattering, JHEP 09 (2003) 076 [hep-ph/0308181] [INSPIRE].

  14. [14]

    Y.V. Kovchegov, D. Pitonyak and M.D. Sievert, Helicity evolution at small-x, JHEP 01 (2016) 072 [Erratum ibid. 10 (2016) 148] [arXiv:1511.06737] [INSPIRE].

  15. [15]

    M. Bianchi, J.F. Morales and C. Wen, Instanton corrections to the effective action of N = 4 SYM, JHEP 11 (2015) 006 [arXiv:1508.00554] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    R.M. Schabinger, Scattering on the moduli space of N = 4 super Yang-Mills, arXiv:0801.1542 [INSPIRE].

  17. [17]

    A. Gorsky and A. Zhiboedov, Aspects of the N = 4 SYM amplitude: Wilson polygon duality, Nucl. Phys. B 835 (2010) 343 [arXiv:0911.3626] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    R.H. Boels, No triangles on the moduli space of maximally supersymmetric gauge theory, JHEP 05 (2010) 046 [arXiv:1003.2989] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. [19]

    S. Caron-Huot and D. O’Connell, Spinor helicity and dual conformal symmetry in ten dimensions, JHEP 08 (2011) 014 [arXiv:1010.5487] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    T. Dennen and Y.-T. Huang, Dual conformal properties of six-dimensional maximal super Yang-Mills amplitudes, JHEP 01 (2011) 140 [arXiv:1010.5874] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, Higgs-regularized three-loop four-gluon amplitude in N = 4 SYM: exponentiation and Regge limits, JHEP 04 (2010) 038 [arXiv:1001.1358] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    N. Craig, H. Elvang, M. Kiermaier and T. Slatyer, Massive amplitudes on the Coulomb branch of N = 4 SYM, JHEP 12 (2011) 097 [arXiv:1104.2050] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    M. Kiermaier, The Coulomb-branch S-matrix from massless amplitudes, arXiv:1105.5385 [INSPIRE].

  25. [25]

    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    J. Plefka, T. Schuster and V. Verschinin, From six to four and more: massless and massive maximal super Yang-Mills amplitudes in 6d and 4d and their hidden symmetries, JHEP 01 (2015) 098 [arXiv:1405.7248] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    L.F. Alday and J.M. Maldacena, Gluon scattering amplitudes at strong coupling, JHEP 06 (2007) 064 [arXiv:0705.0303] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    Z. Bern, J.J. Carrasco, T. Dennen, Y.-T. Huang and H. Ita, Generalized unitarity and six-dimensional helicity, Phys. Rev. D 83 (2011) 085022 [arXiv:1010.0494] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    A.I. Davydychev, Standard and hypergeometric representations for loop diagrams and the photon-photon scattering, in 7th International Seminar on High-energy Physics (Quarks 92), Zvenigorod Russia, 11–17 May 1992, pg. 260 [hep-ph/9307323] [INSPIRE].

  31. [31]

    I.L. Buchbinder, A. Yu. Petrov and A.A. Tseytlin, Two loop N = 4 super Yang-Mills effective action and interaction between D3-branes, Nucl. Phys. B 621 (2002) 179 [hep-th/0110173] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Avalon Publishing, U.S.A., (1995).

    Google Scholar 

  33. [33]

    N. Bogoliubov, A.A. Logunov and I.T. Todorov, Introduction to axiomatic quantum field theory, W.A. Benjamin, Advanced Book Program, Reading MA U.S.A., (1975).

  34. [34]

    M. Beneke, Y. Kiyo and K. Schuller, Third-order correction to top-quark pair production near threshold I. Effective theory set-up and matching coefficients, arXiv:1312.4791 [INSPIRE].

  35. [35]

    I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. 01 (2007) P01021 [hep-th/0610251] [INSPIRE].

    Google Scholar 

  37. [37]

    J.M. Drummond, G.P. Korchemsky and E. Sokatchev, Conformal properties of four-gluon planar amplitudes and Wilson loops, Nucl. Phys. B 795 (2008) 385 [arXiv:0707.0243] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    S.G. Naculich and H.J. Schnitzer, Regge behavior of gluon scattering amplitudes in N = 4 SYM theory, Nucl. Phys. B 794 (2008) 189 [arXiv:0708.3069] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. [39]

    A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. [40]

    J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in N = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. [41]

    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    L.F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, An operator product expansion for polygonal null Wilson loops, JHEP 04 (2011) 088 [arXiv:1006.2788] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    B. Basso, A. Sever and P. Vieira, Spacetime and flux tube S-matrices at finite coupling for N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 111 (2013) 091602 [arXiv:1303.1396] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S. Donnachie, H.G. Dosch, O. Nachtmann and P. Landshoff, Pomeron physics and QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 19 (2002) 1.

    MathSciNet  MATH  Google Scholar 

  45. [45]

    P.D.B. Collins, An introduction to Regge theory and high-energy physics, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge U.K., (2009).

  46. [46]

    N. Gromov and F. Levkovich-Maslyuk, Quantum spectral curve for a cusped Wilson line in N = 4 SYM, JHEP 04 (2016) 134 [arXiv:1510.02098] [INSPIRE].

    ADS  MATH  Google Scholar 

  47. [47]

    E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun. 174 (2006) 222 [hep-ph/0507152] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    G.C. Wick, Properties of Bethe-Salpeter wave functions, Phys. Rev. 96 (1954) 1124 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. [50]

    R.E. Cutkosky, Solutions of a Bethe-Salpeter equations, Phys. Rev. 96 (1954) 1135 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. [51]

    R. Espíndola and J.A. García, Cusp anomalous dimension and rotating open strings in AdS/CFT, JHEP 03 (2018) 116 [arXiv:1607.05305] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    A.M. Polyakov, Gauge fields as rings of glue, Nucl. Phys. B 164 (1980) 171 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  54. [54]

    J.-L. Gervais and A. Neveu, The slope of the leading Regge trajectory in quantum chromodynamics, Nucl. Phys. B 163 (1980) 189 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    V.S. Dotsenko and S.N. Vergeles, Renormalizability of phase factors in the non-Abelian gauge theory, Nucl. Phys. B 169 (1980) 527 [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    I.Ya. Arefeva, Quantum contour field equations, Phys. Lett. B 93 (1980) 347.

  57. [57]

    R.A. Brandt, F. Neri and M.-A. Sato, Renormalization of loop functions for all loops, Phys. Rev. D 24 (1981) 879 [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    H. Dorn, Renormalization of path ordered phase factors and related hadron operators in gauge field theories, Fortsch. Phys. 34 (1986) 11 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. [59]

    G.P. Korchemsky and A.V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342 [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    M. Bonini, L. Griguolo, M. Preti and D. Seminara, Bremsstrahlung function, leading Lüscher correction at weak coupling and localization, JHEP 02 (2016) 172 [arXiv:1511.05016] [INSPIRE].

    ADS  Article  Google Scholar 

  62. [62]

    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. [63]

    T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [Erratum ibid. D 80 (2009) 109901] [arXiv:0904.1021] [INSPIRE].

  64. [64]

    L.J. Dixon, The principle of maximal transcendentality and the four-loop collinear anomalous dimension, JHEP 01 (2018) 075 [arXiv:1712.07274] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. [65]

    A.A. Penin and N. Zerf, Two-loop Bhabha scattering at high energy beyond leading power approximation, Phys. Lett. B 760 (2016) 816 [Erratum ibid. B 771 (2017) 637] [arXiv:1606.06344] [INSPIRE].

  66. [66]

    I. Feige, D.W. Kolodrubetz, I. Moult and I.W. Stewart, A complete basis of helicity operators for subleading factorization, JHEP 11 (2017) 142 [arXiv:1703.03411] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for planar N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60 (1999) 125006 [hep-th/9904191] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  69. [69]

    W. Wasow, Asymptotic expansions for ordinary differential equations. Pure and applied mathematics, vol. XIV, Interscience Publishers, John Wiley & Sons Inc., New York U.S.A., London U.K. and Sydney Australia, (1965).

  70. [70]

    Z. Bern, J.J.M. Carrasco, H. Johansson and D.A. Kosower, Maximally supersymmetric planar Yang-Mills amplitudes at five loops, Phys. Rev. D 76 (2007) 125020 [arXiv:0705.1864] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  71. [71]

    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. [72]

    H.K. Dreiner, H.E. Haber and S.P. Martin, Two-component spinor techniques and Feynman rules for quantum field theory and supersymmetry, Phys. Rept. 494 (2010) 1 [arXiv:0812.1594] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. [73]

    A.V. Smirnov, Algorithm FIRE — Feynman Integral REduction, JHEP 10 (2008) 107 [arXiv:0807.3243] [INSPIRE].

    ADS  Article  Google Scholar 

  74. [74]

    A.V. Smirnov and V.A. Smirnov, FIRE4, LiteRed and accompanying tools to solve integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820 [arXiv:1302.5885] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput. Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].

  77. [77]

    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].

  78. [78]

    T. Becher and M. Neubert, Toward a NNLO calculation of the \( \overline{B}\to {X}_s\gamma \) decay rate with a cut on photon energy. II. Two-loop result for the jet function, Phys. Lett. B 637 (2006) 251 [hep-ph/0603140] [INSPIRE].

  79. [79]

    A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  80. [80]

    A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  81. [81]

    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  82. [82]

    E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997) 1435 [hep-th/9711188] [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  84. [84]

    J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015) 153001 [arXiv:1412.2296] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  85. [85]

    A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [arXiv:1511.03614] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

    ADS  Article  Google Scholar 

  87. [87]

    M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [arXiv:1609.06685] [INSPIRE].

    ADS  Article  Google Scholar 

  89. [89]

    A. Primo and L. Tancredi, On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys. B 916 (2017) 94 [arXiv:1610.08397] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  90. [90]

    P.A. Baikov, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth. A 389 (1997) 347 [hep-ph/9611449] [INSPIRE].

    ADS  Article  Google Scholar 

  91. [91]

    H. Frellesvig and C.G. Papadopoulos, Cuts of Feynman integrals in Baikov representation, JHEP 04 (2017) 083 [arXiv:1701.07356] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  92. [92]

    M. Harley, F. Moriello and R.M. Schabinger, Baikov-Lee representations of cut Feynman integrals, JHEP 06 (2017) 049 [arXiv:1705.03478] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin Brüser.

Additional information

ArXiv ePrint: 1802.02524

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

Supplementary material (TXT 69 kb)

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brüser, R., Caron-Huot, S. & Henn, J.M. Subleading Regge limit from a soft anomalous dimension. J. High Energ. Phys. 2018, 47 (2018). https://doi.org/10.1007/JHEP04(2018)047

Download citation

Keywords

  • Scattering Amplitudes
  • Supersymmetric Gauge Theory
  • Wilson, ’t Hooft and Polyakov loops