Can INO be sensitive to flavor-dependent long-range forces?

  • Amina Khatun
  • Tarak Thakore
  • Sanjib Kumar AgarwallaEmail author
Open Access
Regular Article - Theoretical Physics


Flavor-dependent long-range leptonic forces mediated by the ultra-light and neutral bosons associated with gauged LeLμ or LeLτ symmetry constitute a minimal extension of the Standard Model. In presence of these new anomaly free abelian symmetries, the SM remains invariant and renormalizable, and can lead to interesting phenomenological consequences. For an example, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can enhance νμ and \( {\overline{\nu}}_{\mu } \) survival probabilities over a wide range of energies and baselines in atmospheric neutrino experiments. In this paper, we explore in detail the possible impacts of these long-range flavor-diagonal neutral current interactions due to LeLμ and LeLτ symmetries (one at-a-time) in the context of proposed 50 kt magnetized ICAL detector at INO. Combining the information on muon momentum and hadron energy on an event-by-event basis, ICAL will be sensitive to long-range forces at 90% (3σ) C.L. with 500 kt·yr exposure if the effective gauge coupling α/ > 1.2 × 10−53 (1.75 × 10−53). The sensitivity of ICAL towards α (α) is ∼ 46 (53) times better than the existing bound from the Super-Kamiokande experiment at 90% C.L., and at 3σ, the sensitivity of ICAL is comparable to the bounds obtained from the combined solar and KamLAND data.


Neutrino Physics Beyond Standard Model 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  2. [2]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2017, arXiv:1708.01186 [INSPIRE].
  4. [4]
    F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on absolute neutrino masses and their ordering, Phys. Rev. D 95 (2017) 096014 [arXiv:1703.04471] [INSPIRE].
  5. [5]
    NuFIT webpage,
  6. [6]
    S. Pascoli and T. Schwetz, Prospects for neutrino oscillation physics, Adv. High Energy Phys. 2013 (2013) 1 [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    S.K. Agarwalla, S. Prakash and S. Uma Sankar, Exploring the three flavor effects with future superbeams using liquid argon detectors, JHEP 03 (2014) 087 [arXiv:1304.3251] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    S.K. Agarwalla, Physics potential of long-baseline experiments, Adv. High Energy Phys. 2014 (2014) 457803 [arXiv:1401.4705] [INSPIRE].CrossRefGoogle Scholar
  9. [9]
    NOvA collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ 23 in NOvA, Phys. Rev. Lett. 118 (2017) 151802 [arXiv:1701.05891] [INSPIRE].
  10. [10]
    Super-Kamiokande collaboration, K. Abe et al., Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, arXiv:1710.09126 [INSPIRE].
  11. [11]
    ICAL collaboration, S. Ahmed et al., Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].
  12. [12]
    India-based Neutrino Observatory (INO) webpage,
  13. [13]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S.P. Mikheev and A. Yu. Smirnov, Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].
  15. [15]
    S.P. Mikheev and A. Yu. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C 9 (1986) 17 [INSPIRE].
  16. [16]
    A. Ghosh, T. Thakore and S. Choubey, Determining the neutrino mass hierarchy with INO, T2K, NOvA and reactor experiments, JHEP 04 (2013) 009 [arXiv:1212.1305] [INSPIRE].
  17. [17]
    T. Thakore, A. Ghosh, S. Choubey and A. Dighe, The reach of INO for atmospheric neutrino oscillation parameters, JHEP 05 (2013) 058 [arXiv:1303.2534] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M.M. Devi, T. Thakore, S.K. Agarwalla and A. Dighe, Enhancing sensitivity to neutrino parameters at INO combining muon and hadron information, JHEP 10 (2014) 189 [arXiv:1406.3689] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    A. Ajmi, A. Dev, M. Nizam, N. Nayak and S. Uma Sankar, Improving the hierarchy sensitivity of ICAL using neural network, J. Phys. Conf. Ser. 888 (2017) 012151 [arXiv:1510.02350] [INSPIRE].Google Scholar
  20. [20]
    D. Kaur, M. Naimuddin and S. Kumar, The sensitivity of the ICAL detector at India-based Neutrino Observatory to neutrino oscillation parameters, Eur. Phys. J. C 75 (2015) 156 [arXiv:1409.2231] [INSPIRE].
  21. [21]
    L.S. Mohan and D. Indumathi, Pinning down neutrino oscillation parameters in the 2-3 sector with a magnetised atmospheric neutrino detector: a new study, Eur. Phys. J. C 77 (2017) 54 [arXiv:1605.04185] [INSPIRE].
  22. [22]
    N. Dash, V.M. Datar and G. Majumder, Sensitivity for detection of decay of dark matter particle using ICAL at INO, Pramana 86 (2016) 927 [arXiv:1410.5182] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    N. Dash, V.M. Datar and G. Majumder, Sensitivity of the INO-ICAL detector to magnetic monopoles, Astropart. Phys. 70 (2015) 33 [arXiv:1406.3938] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    A. Chatterjee, R. Gandhi and J. Singh, Probing Lorentz and CPT violation in a magnetized iron detector using atmospheric neutrinos, JHEP 06 (2014) 045 [arXiv:1402.6265] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Chatterjee, P. Mehta, D. Choudhury and R. Gandhi, Testing nonstandard neutrino matter interactions in atmospheric neutrino propagation, Phys. Rev. D 93 (2016) 093017 [arXiv:1409.8472] [INSPIRE].
  26. [26]
    S. Choubey, A. Ghosh, T. Ohlsson and D. Tiwari, Neutrino physics with non-standard interactions at INO, JHEP 12 (2015) 126 [arXiv:1507.02211] [INSPIRE].ADSGoogle Scholar
  27. [27]
    S.P. Behera, A. Ghosh, S. Choubey, V.M. Datar, D.K. Mishra and A.K. Mohanty, Search for the sterile neutrino mixing with the ICAL detector at INO, Eur. Phys. J. C 77 (2017) 307 [arXiv:1605.08607] [INSPIRE].
  28. [28]
    S. Choubey, S. Goswami, C. Gupta, S.M. Lakshmi and T. Thakore, Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector, Phys. Rev. D 97 (2018) 033005 [arXiv:1709.10376] [INSPIRE].
  29. [29]
    S. Choubey, A. Ghosh and D. Tiwari, Prospects of indirect searches for dark matter at INO, arXiv:1711.02546 [INSPIRE].
  30. [30]
    E. Ma, Gauged B-3L τ and radiative neutrino masses, Phys. Lett. B 433 (1998) 74 [hep-ph/9709474] [INSPIRE].
  31. [31]
    H.-S. Lee and E. Ma, Gauged B-x i L origin of R parity and its implications, Phys. Lett. B 688 (2010) 319 [arXiv:1001.0768] [INSPIRE].
  32. [32]
    P. Langacker, The physics of heavy Z gauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    R. Foot, New physics from electric charge quantization?, Mod. Phys. Lett. A 6 (1991) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    R. Foot, G.C. Joshi, H. Lew and R.R. Volkas, Charge quantization in the Standard Model and some of its extensions, Mod. Phys. Lett. A 5 (1990) 2721 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].
  36. [36]
    R. Foot, X.G. He, H. Lew and R.R. Volkas, Model for a light Z boson, Phys. Rev. D 50 (1994) 4571 [hep-ph/9401250] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A.S. Joshipura and S. Mohanty, Constraints on flavor dependent long range forces from atmospheric neutrino observations at Super-Kamiokande, Phys. Lett. B 584 (2004) 103 [hep-ph/0310210] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Bandyopadhyay, A. Dighe and A.S. Joshipura, Constraints on flavor-dependent long range forces from solar neutrinos and KamLAND, Phys. Rev. D 75 (2007) 093005 [hep-ph/0610263] [INSPIRE].
  39. [39]
    J.A. Grifols and E. Masso, Neutrino oscillations in the sun probe long range leptonic forces, Phys. Lett. B 579 (2004) 123 [hep-ph/0311141] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S.S. Chatterjee, A. Dasgupta and S.K. Agarwalla, Exploring flavor-dependent long-range forces in long-baseline neutrino oscillation experiments, JHEP 12 (2015) 167 [arXiv:1509.03517] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J.G. Williams, X.X. Newhall and J.O. Dickey, Relativity parameters determined from lunar laser ranging, Phys. Rev. D 53 (1996) 6730 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    J.G. Williams, S.G. Turyshev and D.H. Boggs, Progress in lunar laser ranging tests of relativistic gravity, Phys. Rev. Lett. 93 (2004) 261101 [gr-qc/0411113] [INSPIRE].
  43. [43]
    E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    A.D. Dolgov, Long range forces in the universe, Phys. Rept. 320 (1999) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    T.D. Lee and C.-N. Yang, Conservation of heavy particles and generalized gauge transformations, Phys. Rev. 98 (1955) 1501 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L. Okun, Leptons and photons, Phys. Lett. B 382 (1996) 389 [hep-ph/9512436] [INSPIRE].
  47. [47]
    L.B. Okun, On muonic charge and muonic photons, Yad. Fiz. 10 (1969) 358 [INSPIRE].Google Scholar
  48. [48]
    J.A. Grifols, E. Masso and S. Peris, Supernova neutrinos as probes of long range nongravitational interactions of dark matter, Astropart. Phys. 2 (1994) 161 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    J.A. Grifols, E. Masso and R. Toldra, Majorana neutrinos and long range forces, Phys. Lett. B 389 (1996) 563 [hep-ph/9606377] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    R. Horvat, Supernova MSW effect in the presence of leptonic long range forces, Phys. Lett. B 366 (1996) 241 [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    M.C. Gonzalez-Garcia, P.C. de Holanda, E. Masso and R. Zukanovich Funchal, Probing long-range leptonic forces with solar and reactor neutrinos, JCAP 01 (2007) 005 [hep-ph/0609094] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    A. Samanta, Long-range forces: atmospheric neutrino oscillation at a magnetized detector, JCAP 09 (2011) 010 [arXiv:1001.5344] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S.K. Agarwalla, Y. Kao and T. Takeuchi, Analytical approximation of the neutrino oscillation matter effects at large θ 13, JHEP 04 (2014) 047 [arXiv:1302.6773] [INSPIRE].
  54. [54]
    J.N. Bahcall, Neutrino astrophysics, Cambridge University Press, Cambridge U.K., (1989) [INSPIRE].
  55. [55]
    B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge, Sov. Phys. JETP 26 (1968) 984 [Zh. Eksp. Teor. Fiz. 53 (1967) 1717] [INSPIRE].
  56. [56]
    B. Pontecorvo, Inverse beta processes and nonconservation of lepton charge, Sov. Phys. JETP 7 (1958) 172 [Zh. Eksp. Teor. Fiz. 34 (1957) 247] [INSPIRE].
  57. [57]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Planet. Interiors 25 (1981) 297 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    S.P. Behera, M.S. Bhatia, V.M. Datar and A.K. Mohanty, Simulation studies for electromagnetic design of INO ICAL magnet and its response to muons, arXiv:1406.3965 [INSPIRE].
  60. [60]
    V.M. Datar et al., Development of glass resistive plate chambers for INO experiment, Nucl. Instrum. Meth. A 602 (2009) 744 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    K. Bhattacharya, A.K. Pal, G. Majumder and N.K. Mondal, Error propagation of the track model and track fitting strategy for the Iron CALorimeter detector in India-based Neutrino Observatory, Comput. Phys. Commun. 185 (2014) 3259 [arXiv:1510.02792] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    K. Bhattacharya, K. Bhattacharya, S. Banerjee and N.K. Mondal, Analytical computation of process noise matrix in Kalman filter for fitting curved tracks in magnetic field within dense, thick scatterers, Eur. Phys. J. C 76 (2016) 382 [arXiv:1512.07836] [INSPIRE].
  63. [63]
    A. Chatterjee et al., A simulations study of the muon response of the iron calorimeter detector at the India-based Neutrino Observatory, 2014 JINST 9 P07001 [arXiv:1405.7243] [INSPIRE].
  64. [64]
    M.M. Devi et al., Hadron energy response of the iron calorimeter detector at the India-based Neutrino Observatory, 2013 JINST 8 P11003 [arXiv:1304.5115] [INSPIRE].
  65. [65]
    L.S. Mohan et al., Simulation studies of hadron energy resolution as a function of iron plate thickness at INO-ICAL, 2014 JINST 9 T09003 [arXiv:1401.2779] [INSPIRE].
  66. [66]
    D. Casper, The nuance neutrino physics simulation and the future, Nucl. Phys. Proc. Suppl. 112 (2002) 161 [hep-ph/0208030] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    M. Sajjad Athar, M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux at INO, South Pole and Pyhásalmi, Phys. Lett. B 718 (2013) 1375 [arXiv:1210.5154] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    M. Honda, T. Kajita, K. Kasahara and S. Midorikawa, Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model, Phys. Rev. D 83 (2011) 123001 [arXiv:1102.2688] [INSPIRE].
  69. [69]
    M. Blennow, P. Coloma, P. Huber and T. Schwetz, Quantifying the sensitivity of oscillation experiments to the neutrino mass ordering, JHEP 03 (2014) 028 [arXiv:1311.1822] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
  71. [71]
    G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162] [INSPIRE].
  72. [72]
    M.C. Gonzalez-Garcia and M. Maltoni, Atmospheric neutrino oscillations and new physics, Phys. Rev. D 70 (2004) 033010 [hep-ph/0404085] [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Amina Khatun
    • 1
    • 2
  • Tarak Thakore
    • 3
  • Sanjib Kumar Agarwalla
    • 1
    • 2
    Email author
  1. 1.Institute of Physics, Sachivalaya Marg, Sainik School PostBhubaneswarIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia
  3. 3.Louisiana State UniversityBaton RougeU.S.A.

Personalised recommendations