Advertisement

Augury of darkness: the low-mass dark Z portal

  • Alexandre Alves
  • Giorgio Arcadi
  • Yann Mambrini
  • Stefano Profumo
  • Farinaldo S. QueirozEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

Dirac fermion dark matter models with heavy Z mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z gauge bosons using the CL S method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. We show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.

Keywords

Cosmology of Theories beyond the SM Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  2. [2]
    J.L. Feng, Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys. 48 (2010) 495 [arXiv:1003.0904] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J. Silk et al., Particle dark matter: observations, models and searches, (2010).Google Scholar
  4. [4]
    H. Baer, K.-Y. Choi, J.E. Kim and L. Roszkowski, Dark matter production in the early universe: beyond the thermal WIMP paradigm, Phys. Rept. 555 (2015) 1 [arXiv:1407.0017] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    L.E. Strigari, Galactic searches for dark matter, Phys. Rept. 531 (2013) 1 [arXiv:1211.7090] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
  7. [7]
    E. Del Nobile, Halo-independent comparison of direct dark matter detection data: a review, Adv. High Energy Phys. 2014 (2014) 604914 [arXiv:1404.4130] [INSPIRE].Google Scholar
  8. [8]
    T. Marrodán Undagoitia and L. Rauch, Dark matter direct-detection experiments, J. Phys. G 43 (2016) 013001 [arXiv:1509.08767] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    F. Mayet et al., A review of the discovery reach of directional dark matter detection, Phys. Rept. 627 (2016) 1 [arXiv:1602.03781] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Is the dark matter particle its own antiparticle?, arXiv:1610.06581 [INSPIRE].
  11. [11]
    S. Profumo, Astrophysical probes of dark matter, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales (TASI 2012), Boulder U.S.A., 4-29 June 2012, pg. 143 [arXiv:1301.0952] [INSPIRE].
  12. [12]
    J. Conrad, Indirect detection of WIMP dark matter: a compact review, in Interplay between Particle and Astroparticle physics (IPA2014), London U.K., 18-22 August 2014 [arXiv:1411.1925] [INSPIRE].
  13. [13]
    F.S. Queiroz, Dark matter overview: collider, direct and indirect detection searches, arXiv:1605.08788 [INSPIRE].
  14. [14]
    N. Fornengo, R.A. Lineros, M. Regis and M. Taoso, Galactic synchrotron emission from WIMPs at radio frequencies, JCAP 01 (2012) 005 [arXiv:1110.4337] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    Y. Mambrini, M.H.G. Tytgat, G. Zaharijas and B. Zaldivar, Complementarity of galactic radio and collider data in constraining WIMP dark matter models, JCAP 11 (2012) 038 [arXiv:1206.2352] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].
  17. [17]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].
  18. [18]
    K. Griest, Cross-sections, relic abundance and detection rates for neutralino dark matter, Phys. Rev. D 38 (1988) 2357 [Erratum ibid. D 39 (1989) 3802] [INSPIRE].
  19. [19]
    S. Profumo, TeV gamma-rays and the largest masses and annihilation cross sections of neutralino dark matter, Phys. Rev. D 72 (2005) 103521 [astro-ph/0508628] [INSPIRE].
  20. [20]
    C. Garcia-Cely and J. Heeck, Phenomenology of left-right symmetric dark matter, JCAP 03 (2016) 021 [arXiv:1512.03332] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    C. Karwin, S. Murgia, T.M.P. Tait, T.A. Porter and P. Tanedo, Dark matter interpretation of the Fermi-LAT observation toward the galactic center, arXiv:1612.05687 [INSPIRE].
  22. [22]
    J.K. Mizukoshi, C.A. de S. Pires, F.S. Queiroz and P.S. Rodrigues da Silva, WIMPs in a 3-3-1 model with heavy sterile neutrinos, Phys. Rev. D 83 (2011) 065024 [arXiv:1010.4097] [INSPIRE].
  23. [23]
    D. Cogollo, A.V. de Andrade, F.S. Queiroz and P. Rebello Teles, Novel sources of flavor changed neutral currents in the 331RHN model, Eur. Phys. J. C 72 (2012) 2029 [arXiv:1201.1268] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    J.D. Ruiz-Alvarez, C.A. de S. Pires, F.S. Queiroz, D. Restrepo and P.S. Rodrigues da Silva, On the connection of gamma-rays, dark matter and Higgs searches at LHC, Phys. Rev. D 86 (2012) 075011 [arXiv:1206.5779] [INSPIRE].
  25. [25]
    D. Cogollo, A.X. Gonzalez-Morales, F.S. Queiroz and P.R. Teles, Excluding the light dark matter window of a 331 model using LHC and direct dark matter detection data, JCAP 11 (2014) 002 [arXiv:1402.3271] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R. Martínez, J. Nisperuza, F. Ochoa and J.P. Rubio, Scalar dark matter with CERN-LEP data and Z search at the LHC in an U(1) model, Phys. Rev. D 90 (2014) 095004 [arXiv:1408.5153] [INSPIRE].
  27. [27]
    C. Kelso, H.N. Long, R. Martinez and F.S. Queiroz, Connection of g − 2μ , electroweak, dark matter and collider constraints on 331 models, Phys. Rev. D 90 (2014) 113011 [arXiv:1408.6203] [INSPIRE].ADSGoogle Scholar
  28. [28]
    A. Alves, S. Profumo, F.S. Queiroz and W. Shepherd, Effective field theory approach to the galactic center gamma-ray excess, Phys. Rev. D 90 (2014) 115003 [arXiv:1403.5027] [INSPIRE].ADSGoogle Scholar
  29. [29]
    B. Allanach, F.S. Queiroz, A. Strumia and S. Sun, Z models for the LHCb and g − 2 muon anomalies, Phys. Rev. D 93 (2016) 055045 [arXiv:1511.07447] [INSPIRE].ADSGoogle Scholar
  30. [30]
    P.V. Dong, N.T.K. Ngan and D.V. Soa, Simple 3-3-1 model and implication for dark matter, Phys. Rev. D 90 (2014) 075019 [arXiv:1407.3839] [INSPIRE].ADSGoogle Scholar
  31. [31]
    P.V. Dong, C.S. Kim, D.V. Soa and N.T. Thuy, Investigation of dark matter in minimal 3-3-1 models, Phys. Rev. D 91 (2015) 115019 [arXiv:1501.04385] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Alves, G. Arcadi, P.V. Dong, L. Duarte, F.S. Queiroz and J.W.F. Valle, R-parity as a residual gauge symmetry: probing a theory of cosmological dark matter, arXiv:1612.04383 [INSPIRE].
  33. [33]
    P. Gondolo, P. Ko and Y. Omura, Light dark matter in leptophobic Z models, Phys. Rev. D 85 (2012) 035022 [arXiv:1106.0885] [INSPIRE].ADSGoogle Scholar
  34. [34]
    H. An, R. Huo and L.-T. Wang, Searching for low mass dark portal at the LHC, Phys. Dark Univ. 2 (2013) 50 [arXiv:1212.2221] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    S. Profumo and F.S. Queiroz, Constraining the Z mass in 331 models using direct dark matter detection, Eur. Phys. J. C 74 (2014) 2960 [arXiv:1307.7802] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. De Simone, G.F. Giudice and A. Strumia, Benchmarks for dark matter searches at the LHC, JHEP 06 (2014) 081 [arXiv:1402.6287] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z -mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    N. Chen, Y. Zhang, Q. Wang, G. Cacciapaglia, A. Deandrea and L. Panizzi, Higgsphobic and fermiophobic Z as a single dark matter candidate, JHEP 05 (2014) 088 [arXiv:1403.2918] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    W.-Z. Feng, G. Shiu, P. Soler and F. Ye, Probing hidden sectors with Stückelberg U(1) gauge fields, Phys. Rev. Lett. 113 (2014) 061802 [arXiv:1401.5880] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    O. Lebedev and Y. Mambrini, Axial dark matter: the case for an invisible Z , Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    P.V. Dong, D.T. Huong, F.S. Queiroz and N.T. Thuy, Phenomenology of the 3-3-1-1 model, Phys. Rev. D 90 (2014) 075021 [arXiv:1405.2591] [INSPIRE].ADSGoogle Scholar
  44. [44]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    C. Marcos, M. Peiro and S. Robles, On the importance of direct detection combined limits for spin independent and spin dependent dark matter interactions, JCAP 03 (2016) 019 [arXiv:1507.08625] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    N. Chen, J. Wang and X.-P. Wang, The leptophilic dark matter with Z interaction: from indirect searches to future e + e collider searches, arXiv:1501.04486 [INSPIRE].
  48. [48]
    O. Ducu, L. Heurtier and J. Maurer, LHC signatures of a Z mediator between dark matter and the SU(3) sector, JHEP 03 (2016) 006 [arXiv:1509.05615] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    V.M. Lozano, M. Peiró and P. Soler, Isospin violating dark matter in Stückelberg portal scenarios, JHEP 04 (2015) 175 [arXiv:1503.01780] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    C.-W. Chiang, T. Nomura and K. Yagyu, Leptophobic Z in models with multiple Higgs doublet fields, JHEP 05 (2015) 127 [arXiv:1502.00855] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    N. Okada and S. Okada, Z -portal right-handed neutrino dark matter in the minimal U(1)X extended Standard Model, Phys. Rev. D 95 (2017) 035025 [arXiv:1611.02672] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Celis, W.-Z. Feng and M. Vollmann, Dirac dark matter and bsℓ + with U(1) gauge symmetry, Phys. Rev. D 95 (2017) 035018 [arXiv:1608.03894] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Klasen, F. Lyonnet and F.S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model, arXiv:1607.06468 [INSPIRE].
  54. [54]
    N.F. Bell, Y. Cai and R.K. Leane, Impact of mass generation for spin-1 mediator simplified models, JCAP 01 (2017) 039 [arXiv:1610.03063] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    P. Ko and T. Nomura, Phenomenology of dark matter in chiral U(1)X dark sector, Phys. Rev. D 94 (2016) 115015 [arXiv:1607.06218] [INSPIRE].ADSGoogle Scholar
  56. [56]
    M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z models from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z , JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    C. Englert, M. McCullough and M. Spannowsky, s-channel dark matter simplified models and unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE].
  60. [60]
    F.S. Sage, J.N.E. Ho, T.G. Steele and R. Dick, Remarks on top-philic Z boson interactions with nucleons, arXiv:1611.03367 [INSPIRE].
  61. [61]
    W. Altmannshofer, S. Gori, S. Profumo and F.S. Queiroz, Explaining dark matter and B decay anomalies with an L μ -L τ model, JHEP 12 (2016) 106 [arXiv:1609.04026] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    N. Okada and S. Okada, Z BL portal dark matter and LHC run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].ADSGoogle Scholar
  63. [63]
    Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Z jet, JHEP 06 (2015) 205 [arXiv:1504.01395] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    A. Ismail, W.-Y. Keung, K.-H. Tsao and J. Unwin, Axial vector Z and anomaly cancellation, Nucl. Phys. B 918 (2017) 220 [arXiv:1609.02188] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].
  66. [66]
    ATLAS collaboration, Search for high-mass dilepton resonances in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052005 [arXiv:1405.4123] [INSPIRE].
  67. [67]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    I. Hoenig, G. Samach and D. Tucker-Smith, Searching for dilepton resonances below the Z mass at the LHC, Phys. Rev. D 90 (2014) 075016 [arXiv:1408.1075] [INSPIRE].ADSGoogle Scholar
  70. [70]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de Traubenberg, Automated mass spectrum generation for new physics, Eur. Phys. J. C 73 (2013) 2325 [arXiv:1301.5932] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  73. [73]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  74. [74]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  75. [75]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  76. [76]
    ATLAS collaboration, Search for new high-mass resonances in the dilepton final state using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-045, CERN, Geneva Switzerland, (2016).
  77. [77]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  78. [78]
    G. Arcadi, Y. Mambrini and F. Richard, Z-portal dark matter, JCAP 03 (2015) 018 [arXiv:1411.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    DES and Fermi-LAT collaborations, A. Albert et al., Searching for dark matter annihilation in recently discovered milky way satellites with Fermi-LAT, Astrophys. J. 834 (2017) 110 [arXiv:1611.03184] [INSPIRE].
  81. [81]
    D. Hooper, C. Kelso and F.S. Queiroz, Stringent and robust constraints on the dark matter annihilation cross section from the region of the galactic center, Astropart. Phys. 46 (2013) 55 [arXiv:1209.3015] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    T. Bringmann and C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].CrossRefGoogle Scholar
  83. [83]
    L. Bergstrom, T. Bringmann, I. Cholis, D. Hooper and C. Weniger, New limits on dark matter annihilation from AMS cosmic ray positron data, Phys. Rev. Lett. 111 (2013) 171101 [arXiv:1306.3983] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A.X. Gonzalez-Morales, S. Profumo and F.S. Queiroz, Effect of black holes in local dwarf spheroidal galaxies on gamma-ray constraints on dark matter annihilation, Phys. Rev. D 90 (2014) 103508 [arXiv:1406.2424] [INSPIRE].ADSGoogle Scholar
  85. [85]
    S. Profumo, F.S. Queiroz and C.E. Yaguna, Extending Fermi-LAT and H.E.S.S. limits on gamma-ray lines from dark matter annihilation, Mon. Not. Roy. Astron. Soc. 461 (2016) 3976 [arXiv:1602.08501] [INSPIRE].
  86. [86]
    R. Caputo et al., Search for gamma-ray emission from dark matter annihilation in the small Magellanic cloud with the Fermi Large Area Telescope, Phys. Rev. D 93 (2016) 062004 [arXiv:1603.00965] [INSPIRE].ADSGoogle Scholar
  87. [87]
    H.-Y. Cheng and C.-W. Chiang, Revisiting scalar and pseudoscalar couplings with nucleons, JHEP 07 (2012) 009 [arXiv:1202.1292] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP 08 (2016) 111 [arXiv:1605.04917] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    PandaX-II collaboration, C. Fu et al., Spin-dependent weakly-interacting-massive-particle-nucleon cross section limits from first data of PandaX-II experiment, Phys. Rev. Lett. 118 (2017) 071301 [arXiv:1611.06553] [INSPIRE].
  90. [90]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  91. [91]
    M. Escudero, D. Hooper and S.J. Witte, Updated collider and direct detection constraints on dark matter models for the galactic center gamma-ray excess, JCAP 02 (2017) 038 [arXiv:1612.06462] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    M. Lindner, M. Platscher and F.S. Queiroz, A call for new physics: the muon anomalous magnetic moment and lepton flavor violation, arXiv:1610.06587 [INSPIRE].
  93. [93]
    C.E. Yaguna, Isospin-violating dark matter in the light of recent data, Phys. Rev. D 95 (2017) 055015 [arXiv:1610.08683] [INSPIRE].ADSGoogle Scholar
  94. [94]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  96. [96]
    L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope, arXiv:0910.2998 [INSPIRE].
  97. [97]
    D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    A. Boyarsky, D. Malyshev and O. Ruchayskiy, A comment on the emission from the galactic center as seen by the Fermi telescope, Phys. Lett. B 705 (2011) 165 [arXiv:1012.5839] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].ADSGoogle Scholar
  100. [100]
    K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].
  101. [101]
    D. Hooper and T.R. Slatyer, Two emission mechanisms in the Fermi bubbles: a possible signal of annihilating dark matter, Phys. Dark Univ. 2 (2013) 118 [arXiv:1302.6589] [INSPIRE].CrossRefGoogle Scholar
  102. [102]
    C. Gordon and O. Macias, Dark matter and pulsar model constraints from galactic center Fermi-LAT gamma ray observations, Phys. Rev. D 88 (2013) 083521 [Erratum ibid. D 89 (2014) 049901] [arXiv:1306.5725] [INSPIRE].
  103. [103]
    W.-C. Huang, A. Urbano and W. Xue, Fermi bubbles under dark matter scrutiny. Part I: astrophysical analysis, arXiv:1307.6862 [INSPIRE].
  104. [104]
    T. Daylan et al., The characterization of the gamma-ray signal from the central milky way: a case for annihilating dark matter, Phys. Dark Univ. 12 (2016) 1 [arXiv:1402.6703] [INSPIRE].CrossRefGoogle Scholar
  105. [105]
    K.N. Abazajian, N. Canac, S. Horiuchi and M. Kaplinghat, Astrophysical and dark matter interpretations of extended gamma-ray emission from the galactic center, Phys. Rev. D 90 (2014) 023526 [arXiv:1402.4090] [INSPIRE].ADSGoogle Scholar
  106. [106]
    F. Calore, I. Cholis and C. Weniger, Background model systematics for the Fermi GeV excess, JCAP 03 (2015) 038 [arXiv:1409.0042] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    Fermi-LAT collaboration, M. Ajello et al., Fermi-LAT observations of high-energy γ-ray emission toward the galactic center, Astrophys. J. 819 (2016) 44 [arXiv:1511.02938] [INSPIRE].
  108. [108]
    D. Hooper, Z mediated dark matter models for the galactic center gamma-ray excess, Phys. Rev. D 91 (2015) 035025 [arXiv:1411.4079] [INSPIRE].ADSGoogle Scholar
  109. [109]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Alexandre Alves
    • 1
  • Giorgio Arcadi
    • 2
  • Yann Mambrini
    • 3
  • Stefano Profumo
    • 4
    • 5
  • Farinaldo S. Queiroz
    • 2
    Email author
  1. 1.Departamento de FísicaUniversidade Federal de São PauloSão PauloBrasil
  2. 2.Max-Planck-Institut fur KernphysikHeidelbergGermany
  3. 3.Laboratoire de Physique Théorique, CNRS — UMR 8627, Université de Paris-Saclay 11Orsay CedexFrance
  4. 4.Department of PhysicsUniversity of California, Santa CruzSanta CruzU.S.A.
  5. 5.Santa Cruz Institute for Particle Physics, Santa CruzSanta CruzU.S.A.

Personalised recommendations