Advertisement

From maximal to minimal supersymmetry in string loop amplitudes

  • Marcus Berg
  • Igor Buchberger
  • Oliver Schlotterer
Open Access
Regular Article - Theoretical Physics

Abstract

We calculate one-loop string amplitudes of open and closed strings with N = 1, 2, 4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.

Keywords

Scattering Amplitudes Superstrings and Heterotic Strings Supersymmetric Effective Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 supergravity as limits of string theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    H. Gomez and C.R. Mafra, The closed-string 3-loop amplitude and S-duality, JHEP 10 (2013) 217 [arXiv:1308.6567] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    J.P. Conlon, S.S. AbdusSalam, F. Quevedo and K. Suruliz, Soft SUSY breaking terms for chiral matter in IIB string compactifications, JHEP 01 (2007) 032 [hep-th/0610129] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Reece and W. Xue, SUSYs ladder: reframing sequestering at large volume, JHEP 04 (2016) 045 [arXiv:1512.04941] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    M. Bianchi and A.V. Santini, String predictions for near future colliders from one-loop scattering amplitudes around D-brane worlds, JHEP 12 (2006) 010 [hep-th/0607224] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    M. Bianchi and D. Consoli, Simplifying one-loop amplitudes in superstring theory, JHEP 01 (2016) 043 [arXiv:1508.00421] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes in \( \mathcal{N}=4 \) supergravity models, Phys. Rev. D 87 (2013) 045001 [arXiv:1208.1255] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A. Ochirov and P. Tourkine, BCJ duality and double copy in the closed string sector, JHEP 05 (2014) 136 [arXiv:1312.1326] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    C.R. Mafra and O. Schlotterer, One-loop superstring six-point amplitudes and anomalies in pure spinor superspace, JHEP 04 (2016) 148 [arXiv:1603.04790] [INSPIRE].ADSGoogle Scholar
  12. [12]
    M.B. Green and J.H. Schwarz, Supersymmetrical dual string theory. 3. Loops and renormalization, Nucl. Phys. B 198 (1982) 441 [INSPIRE].
  13. [13]
    M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four loop divergences for the N = 1 supersymmetric nonlinear σ-model in two-dimensions, Nucl. Phys. B 277 (1986) 409 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    D.J. Gross and E. Witten, Superstring modifications of Einsteins equations, Nucl. Phys. B 277 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    G. Policastro and D. Tsimpis, R 4 , purified, Class. Quant. Grav. 23 (2006) 4753 [hep-th/0603165] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  17. [17]
    J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, Nucl. Phys. B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    R. Minasian, T.G. Pugh and R. Savelli, F-theory at order α 3, JHEP 10 (2015) 050 [arXiv:1506.06756] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R 4 couplings in M and type-II theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys. B 291 (1987) 41 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Fleig, H.P.A. Gustafsson, A. Kleinschmidt and D. Persson, Eisenstein series and automorphic representations, arXiv:1511.04265 [INSPIRE].
  22. [22]
    C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109 [hep-th/9410167] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    J. Broedel and L.J. Dixon, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP 10 (2012) 091 [arXiv:1208.0876] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Stieberger, Constraints on tree-level higher order gravitational couplings in superstring theory, Phys. Rev. Lett. 106 (2011) 111601 [arXiv:0910.0180] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    O. Schlotterer and S. Stieberger, Motivic multiple zeta values and superstring amplitudes, J. Phys. A 46 (2013) 475401 [arXiv:1205.1516] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].
  27. [27]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].
  28. [28]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. Broedel, O. Schlotterer, S. Stieberger and T. Terasoma, All order α -expansion of superstring trees from the Drinfeld associator, Phys. Rev. D 89 (2014) 066014 [arXiv:1304.7304] [INSPIRE].ADSGoogle Scholar
  30. [30]
    J. Broedel and L.J. Dixon, R 4 counterterm and E 7(7) symmetry in maximal supergravity, JHEP 05 (2010) 003 [arXiv:0911.5704] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales and S. Stieberger, E 7(7) constraints on counterterms in N = 8 supergravity, Phys. Lett. B 694 (2011) 265 [arXiv:1009.1643] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. Elvang, D.Z. Freedman and M. Kiermaier, A simple approach to counterterms in N = 8 supergravity, JHEP 11 (2010) 016 [arXiv:1003.5018] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  34. [34]
    S. Stieberger, Closed superstring amplitudes, single-valued multiple zeta values and the Deligne associator, J. Phys. A 47 (2014) 155401 [arXiv:1310.3259] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    F. Zerbini, Single-valued multiple zeta values in genus 1 superstring amplitudes, arXiv:1512.05689 [INSPIRE].
  36. [36]
    E. D’Hoker, M.B. Green, O. Gurdogan and P. Vanhove, Modular graph functions, arXiv:1512.06779 [INSPIRE].
  37. [37]
    S. Stieberger and T.R. Taylor, Closed string amplitudes as single-valued open string amplitudes, Nucl. Phys. B 881 (2014) 269 [arXiv:1401.1218] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    Y.-t. Huang and C. Wen, Soft theorems from anomalous symmetries, JHEP 12 (2015) 143 [arXiv:1509.07840] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    Y.-t. Huang, O. Schlotterer and C. Wen, Universality in string interactions, JHEP 09 (2016) 155 [arXiv:1602.01674] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  41. [41]
    E. Kiritsis and B. Pioline, On R 4 threshold corrections in IIB string theory and (p, q) string instantons, Nucl. Phys. B 508 (1997) 509 [hep-th/9707018] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  42. [42]
    K. Forger, B.A. Ovrut, S.J. Theisen and D. Waldram, Higher derivative gravity in string theory, Phys. Lett. B 388 (1996) 512 [hep-th/9605145] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    J.A. Minahan, One loop amplitudes on orbifolds and the renormalization of coupling constants, Nucl. Phys. B 298 (1988) 36 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    A. Hashimoto and I.R. Klebanov, Scattering of strings from D-branes, Nucl. Phys. Proc. Suppl. 55B (1997) 118 [hep-th/9611214] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  45. [45]
    E. Witten, Superstring perturbation theory revisited, arXiv:1209.5461 [INSPIRE].
  46. [46]
    M. Berg, I. Buchberger and O. Schlotterer, String-motivated one-loop amplitudes in gauge theories with half-maximal supersymmetry, arXiv:1611.03459 [INSPIRE].
  47. [47]
    A. Gregori, E. Kiritsis, C. Kounnas, N.A. Obers, P.M. Petropoulos and B. Pioline, R 2 corrections and nonperturbative dualities of N = 4 string ground states, Nucl. Phys. B 510 (1998) 423 [hep-th/9708062] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  48. [48]
    W. Lerche, B.E.W. Nilsson, A.N. Schellekens and N.P. Warner, Anomaly cancelling terms from the elliptic genus, Nucl. Phys. B 299 (1988) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  49. [49]
    S. Stieberger and T.R. Taylor, NonAbelian Born-Infeld action and type-I. Heterotic duality (1): heterotic F 6 terms at two loops, Nucl. Phys. B 647 (2002) 49 [hep-th/0207026] [INSPIRE].
  50. [50]
    S. Stieberger and T.R. Taylor, NonAbelian Born-Infeld action and type I. Heterotic duality (2): nonrenormalization theorems, Nucl. Phys. B 648 (2003) 3 [hep-th/0209064] [INSPIRE].
  51. [51]
    J.A. Harvey and G.W. Moore, Five-brane instantons and R 2 couplings in N = 4 string theory, Phys. Rev. D 57 (1998) 2323 [hep-th/9610237] [INSPIRE].ADSGoogle Scholar
  52. [52]
    J. Soda, N. Nakazawa, K. Sakai and S. Ojima, Comment on nonrenormalization theorem in the four-dimensional superstrings, Phys. Lett. B 201 (1988) 73 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    K. Peeters, P. Vanhove and A. Westerberg, Supersymmetric higher derivative actions in ten-dimensions and eleven-dimensions, the associated superalgebras and their formulation in superspace, Class. Quant. Grav. 18 (2001) 843 [hep-th/0010167] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  54. [54]
    A.A. Tseytlin, Heterotic type-I superstring duality and low-energy effective actions, Nucl. Phys. B 467 (1996) 383 [hep-th/9512081] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  55. [55]
    M.T. Grisaru, Two loop renormalizability of supergravity, Phys. Lett. 66B (1977) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    R.R. Metsaev and A.A. Tseytlin, Curvature cubed terms in string theory effective actions, Phys. Lett. B 185 (1987) 52 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    B.E.W. Nilsson and A.K. Tollsten, Supersymmetrization of ζ(3)R μνρσ4 in superstring theories, Phys. Lett. B 181 (1986) 63 [INSPIRE].
  58. [58]
    R. Kallosh, Strings and superspace, Phys. Scripta T 15 (1987) 118.ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    E.A. Bergshoeff and M. de Roo, The quartic effective action of the heterotic string and supersymmetry, Nucl. Phys. B 328 (1989) 439 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    Z. Bern, H.-H. Chi, L. Dixon and A. Edison, Two-loop renormalization of quantum gravity simplified, Phys. Rev. D 95 (2017) 046013 [arXiv:1701.02422] [INSPIRE].ADSGoogle Scholar
  61. [61]
    E. Kiritsis and C. Kounnas, Infrared regularization of superstring theory and the one loop calculation of coupling constants, Nucl. Phys. B 442 (1995) 472 [hep-th/9501020] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    E. Kohlprath, Renormalization of the Planck mass for type-II superstrings on symmetric orbifolds, JHEP 10 (2002) 026 [hep-th/0207023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    M. Haack and J.U. Kang, One-loop Einstein-Hilbert term in minimally supersymmetric type IIB orientifolds, JHEP 02 (2016) 160 [arXiv:1511.03957] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    E. Kohlprath, Induced gravity in Z(N ) orientifold models, Nucl. Phys. B 697 (2004) 243 [hep-th/0311251] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    F.T.J. Epple, Induced gravity on intersecting branes, JHEP 09 (2004) 021 [hep-th/0408105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  66. [66]
    I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T.R. Taylor, Aspects of type-I-type-II-heterotic triality in four-dimensions, Nucl. Phys. B 489 (1997) 160 [hep-th/9608012] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    M.B. Green, H.-h. Kwon and P. Vanhove, Two loops in eleven-dimensions, Phys. Rev. D 61 (2000) 104010 [hep-th/9910055] [INSPIRE].ADSMathSciNetGoogle Scholar
  68. [68]
    M.B. Green, S.D. Miller and P. Vanhove, SL(2, )-invariance and D-instanton contributions to the D 6 R 4 interaction, Commun. Num. Theor. Phys. 09 (2015) 307 [arXiv:1404.2192] [INSPIRE].zbMATHCrossRefGoogle Scholar
  69. [69]
    M.B. Green and P. Vanhove, Duality and higher derivative terms in M-theory, JHEP 01 (2006) 093 [hep-th/0510027] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  70. [70]
    E. D’Hoker, M.B. Green, B. Pioline and R. Russo, Matching the D 6 R 4 interaction at two-loops, JHEP 01 (2015) 031 [arXiv:1405.6226] [INSPIRE].CrossRefGoogle Scholar
  71. [71]
    H. Gomez, C.R. Mafra and O. Schlotterer, Two-loop superstring five-point amplitude and S-duality, Phys. Rev. D 93 (2016) 045030 [arXiv:1504.02759] [INSPIRE].ADSMathSciNetGoogle Scholar
  72. [72]
    E. Kiritsis, String theory in a nutshell, Princeton University Press, Princeton, U.S.A. (2007).zbMATHGoogle Scholar
  73. [73]
    L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambrige U.K. (2012).zbMATHGoogle Scholar
  74. [74]
    R. Blumenhagen, D. Lüst and S. Theisen, Basic concepts of string theory, Springer, Germany (2013).zbMATHCrossRefGoogle Scholar
  75. [75]
    A. Tsuchiya, More on one loop massless amplitudes of superstring theories, Phys. Rev. D 39 (1989) 1626 [INSPIRE].ADSMathSciNetGoogle Scholar
  76. [76]
    N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring, JHEP 09 (2004) 047 [hep-th/0406055] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    C.R. Mafra and O. Schlotterer, The structure of n-point one-loop open superstring amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M.B. Green, J.H. Schwarz and E. Witten, Superstring theory. Volume 2: loop amplitudes, anomalies and phenomenology, Cambridge University Press, Cambridge U.K. (1987).Google Scholar
  79. [79]
    E.P. Verlinde and H.L. Verlinde, Lectures on string perturbation theory, in the proceedings of Superstrings88, April 11-19, Trieste, Italy (1988).Google Scholar
  80. [80]
    J. Broedel, C.R. Mafra, N. Matthes and O. Schlotterer, Elliptic multiple zeta values and one-loop superstring amplitudes, JHEP 07 (2015) 112 [arXiv:1412.5535] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  81. [81]
    M. Berg, M. Haack, J.U. Kang and S. Sjörs, Towards the one-loop Kähler metric of Calabi-Yau orientifolds, JHEP 12 (2014) 077 [arXiv:1407.0027] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  82. [82]
    L. Dolan and P. Goddard, Current algebra on the torus, Commun. Math. Phys. 285 (2009) 219 [arXiv:0710.3743] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    M. Berg, M. Haack and B. Körs, Loop corrections to volume moduli and inflation in string theory, Phys. Rev. D 71 (2005) 026005 [hep-th/0404087] [INSPIRE].ADSMathSciNetGoogle Scholar
  84. [84]
    D. Friedan, S.H. Shenker and E.J. Martinec, Covariant quantization of superstrings, Phys. Lett. 160B (1985) 55 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  85. [85]
    D. Friedan, E.J. Martinec and S.H. Shenker, Conformal invariance, supersymmetry and string theory, Nucl. Phys. B 271 (1986) 93 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  86. [86]
    Z. Bern and D.A. Kosower, Efficient calculation of one loop QCD amplitudes, Phys. Rev. Lett. 66 (1991) 1669 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    M.J. Strassler, Field theory without Feynman diagrams: one loop effective actions, Nucl. Phys. B 385 (1992) 145 [hep-ph/9205205] [INSPIRE].
  89. [89]
    N.E.J. Bjerrum-Bohr and P. Vanhove, Absence of triangles in maximal supergravity amplitudes, JHEP 10 (2008) 006 [arXiv:0805.3682] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  90. [90]
    M.B. Green and P. Vanhove, The Low-energy expansion of the one loop type-II superstring amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].ADSMathSciNetGoogle Scholar
  91. [91]
    M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one amplitude in type-II superstring theory, JHEP 02 (2008) 020 [arXiv:0801.0322] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  92. [92]
    D.M. Richards, The One-Loop Five-Graviton Amplitude and the Effective Action, JHEP 10 (2008) 042 [arXiv:0807.2421] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  93. [93]
    M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality in closed superstring theory, JHEP 10 (2013) 188 [arXiv:1307.3534] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  94. [94]
    Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes, Phys. Rev. D 85 (2012) 105014 [arXiv:1201.5366] [INSPIRE].ADSGoogle Scholar
  95. [95]
    M.T. Grisaru, H.N. Pendleton and P. van Nieuwenhuizen, Supergravity and the S matrix, Phys. Rev. D 15 (1977) 996 [INSPIRE].ADSGoogle Scholar
  96. [96]
    M.T. Grisaru and H.N. Pendleton, Some properties of scattering amplitudes in supersymmetric theories, Nucl. Phys. B 124 (1977) 81 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  97. [97]
    F.A. Berends and W.T. Giele, Recursive calculations for processes with N gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  99. [99]
    C.R. Mafra and O. Schlotterer, Multiparticle SYM equations of motion and pure spinor BRST blocks, JHEP 07 (2014) 153 [arXiv:1404.4986] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    C.R. Mafra and O. Schlotterer, Berends-Giele recursions and the BCJ duality in superspace and components, JHEP 03 (2016) 097 [arXiv:1510.08846] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    C.R. Mafra, Towards field theory amplitudes from the cohomology of pure spinor superspace, JHEP 11 (2010) 096 [arXiv:1007.3639] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  103. [103]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  104. [104]
    C.R. Mafra and O. Schlotterer, Cohomology foundations of one-loop amplitudes in pure spinor superspace, arXiv:1408.3605 [INSPIRE].
  105. [105]
    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  106. [106]
    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  107. [107]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  108. [108]
    C.R. Mafra and O. Schlotterer, Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory, Phys. Rev. D 92 (2015) 066001 [arXiv:1501.05562] [INSPIRE].ADSMathSciNetGoogle Scholar
  109. [109]
    H. Johansson and A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  110. [110]
    E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one Type II superstring low energy expansion, JHEP 08 (2015) 041 [arXiv:1502.06698] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  111. [111]
    E. D’Hoker and M.B. Green, Identities between modular graph forms, arXiv:1603.00839 [INSPIRE].
  112. [112]
    A. Kehagias and H. Partouche, On the exact quartic effective action for the type IIB superstring, Phys. Lett. B 422 (1998) 109 [hep-th/9710023] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  113. [113]
    J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  114. [114]
    G. Policastro and D. Tsimpis, A note on the quartic effective action of type IIB superstring, Class. Quant. Grav. 26 (2009) 125001 [arXiv:0812.3138] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  115. [115]
    Y.-H. Lin, S.-H. Shao, Y. Wang and X. Yin, Supersymmetry constraints and string theory on K3, JHEP 12 (2015) 142 [arXiv:1508.07305] [INSPIRE].ADSMathSciNetGoogle Scholar
  116. [116]
    Y.-H. Lin, S.-H. Shao, D. Simmons-Duffin, Y. Wang and X. Yin, N = 4 superconformal bootstrap of the K3 CFT, arXiv:1511.04065 [INSPIRE].
  117. [117]
    N. Berkovits, Covariant quantization of the Green-Schwarz superstring in a Calabi-Yau background, Nucl. Phys. B 431 (1994) 258 [hep-th/9404162] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  118. [118]
    N. Berkovits, C. Vafa and E. Witten, Conformal field theory of AdS background with Ramond-Ramond flux, JHEP 03 (1999) 018 [hep-th/9902098] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  119. [119]
    E.G. Gimon and C.V. Johnson, K3 orientifolds, Nucl. Phys. B 477 (1996) 715 [hep-th/9604129] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  120. [120]
    G. Aldazabal, A. Font, L.E. Ibáñez and G. Violero, D = 4, N = 1, type IIB orientifolds, Nucl. Phys. B 536 (1998) 29 [hep-th/9804026] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. [121]
    A. Font and S. Theisen, Introduction to string compactification, Lect. Notes Phys. 668 (2005) 101 [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  122. [122]
    D. Mumford, Tata Lectures on Theta I, Birkhäuser, Germany (1983).Google Scholar
  123. [123]
    J. Polchinski, String theory. Volume 1: an introduction to the bosonic string, Cambridge University Press, Cambridge (1998).Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Marcus Berg
    • 1
  • Igor Buchberger
    • 1
  • Oliver Schlotterer
    • 2
  1. 1.Department of PhysicsKarlstad UniversityKarlstadSweden
  2. 2.Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-InstitutPotsdamGermany

Personalised recommendations