Journal of High Energy Physics

, 2017:143

Hunting the dark Higgs

  • Michael Duerr
  • Alexander Grohsjean
  • Felix Kahlhoefer
  • Bjoern Penning
  • Kai Schmidt-Hoberg
  • Christian Schwanenberger
Open Access
Regular Article - Theoretical Physics

Abstract

We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of the particles in the dark sector and the possibility to relax constraints from the dark matter relic abundance by opening up a new annihilation channel. If the dark Higgs boson decays into Standard Model states via a small mixing with the Standard Model Higgs boson, one obtains characteristic large-radius jets in association with missing transverse momentum that can be used to efficiently discriminate signal from backgrounds. We present the sensitivities achievable in LHC searches for dark Higgs bosons with already collected data and demonstrate that such searches can probe large regions of parameter space that are inaccessible to conventional mono-jet or di-jet searches.

Keywords

Beyond Standard Model Cosmology of Theories beyond the SM 

References

  1. [1]
    M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    A. Alves, S. Profumo and F.S. Queiroz, The dark Z portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Garny, A. Ibarra, S. Rydbeck and S. Vogl, Majorana dark matter with a coloured mediator: collider vs direct and indirect searches, JHEP 06 (2014) 169 [arXiv:1403.4634] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Ghorbani and H. Ghorbani, Two-portal dark matter, Phys. Rev. D 91 (2015) 123541 [arXiv:1504.03610] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Jacques, A. Katz, E. Morgante, D. Racco, M. Rameez and A. Riotto, Complementarity of DM searches in a consistent simplified model: the case of Z , JHEP 10 (2016) 071 [arXiv:1605.06513] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N.F. Bell, Y. Cai and R.K. Leane, Dark forces in the sky: signals from Z and the dark Higgs, JCAP 08 (2016) 001 [arXiv:1605.09382] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Ko and J. Li, Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM, Phys. Lett. B 765 (2017) 53 [arXiv:1610.03997] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    D. Goncalves, P.A.N. Machado and J.M. No, Simplified models for dark matter face their consistent completions, Phys. Rev. D 95 (2017) 055027 [arXiv:1611.04593] [INSPIRE].ADSGoogle Scholar
  13. [13]
    N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent dark matter simplified models with an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    PandaX-II collaboration, A. Tan et al., Dark matter results from first 98.7 days of data from the PandaX-II experiment, Phys. Rev. Lett. 117 (2016) 121303 [arXiv:1607.07400] [INSPIRE].
  15. [15]
    LUX collaboration, D.S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303 [arXiv:1608.07648] [INSPIRE].
  16. [16]
    PICO collaboration, C. Amole et al., Dark matter search results from the PICO-60 CF 3 I bubble chamber, Phys. Rev. D 93 (2016) 052014 [arXiv:1510.07754] [INSPIRE].
  17. [17]
    PICO collaboration, C. Amole et al., Improved dark matter search results from PICO-2L Run 2, Phys. Rev. D 93 (2016) 061101 [arXiv:1601.03729] [INSPIRE].
  18. [18]
    Fermi-LAT collaboration, M. Ackermann et al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi Large Area Telescope data, Phys. Rev. Lett. 115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
  19. [19]
    AMS collaboration, M. Aguilar et al., Antiproton flux, antiproton-to-proton flux ratio and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].
  20. [20]
    IceCube collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the sun with the 79-string IceCube detector and implications for supersymmetry, JCAP 04 (2016) 022 [arXiv:1601.00653] [INSPIRE].
  21. [21]
    O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    M. Fairbairn and J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D 90 (2014) 115019 [arXiv:1406.3288] [INSPIRE].ADSGoogle Scholar
  23. [23]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Closing up on dark sectors at colliders: from 14 to 100 TeV, Phys. Rev. D 93 (2016) 054030 [arXiv:1509.02904] [INSPIRE].ADSGoogle Scholar
  24. [24]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z portal, Phys. Rev. D 92 (2015) 083004 [arXiv:1501.03490] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Choudhury, K. Kowalska, L. Roszkowski, E.M. Sessolo and A.J. Williams, Less-simplified models of dark matter for direct detection and the LHC, JHEP 04 (2016) 182 [arXiv:1509.05771] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Blennow, J. Herrero-Garcia, T. Schwetz and S. Vogl, Halo-independent tests of dark matter direct detection signals: local DM density, LHC and thermal freeze-out, JCAP 08 (2015) 039 [arXiv:1505.05710] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J. Heisig, M. Krämer, M. Pellen and C. Wiebusch, Constraints on Majorana dark matter from the LHC and IceCube, Phys. Rev. D 93 (2016) 055029 [arXiv:1509.07867] [INSPIRE].ADSGoogle Scholar
  28. [28]
    O. Buchmueller, S.A. Malik, C. McCabe and B. Penning, Constraining dark matter interactions with pseudoscalar and scalar mediators using collider searches for multijets plus missing transverse energy, Phys. Rev. Lett. 115 (2015) 181802 [arXiv:1505.07826] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    J. Brooke, M.R. Buckley, P. Dunne, B. Penning, J. Tamanas and M. Zgubic, Vector boson fusion searches for dark matter at the LHC, Phys. Rev. D 93 (2016) 113013 [arXiv:1603.07739] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, Making the most of the relic density for dark matter searches at the LHC 14 TeV run, JCAP 03 (2015) 022 [arXiv:1410.7409] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  32. [32]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    N.F. Bell, Y. Cai and R.K. Leane, Impact of mass generation for spin-1 mediator simplified models, JCAP 01 (2017) 039 [arXiv:1610.03063] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A.A. Petrov and W. Shepherd, Searching for dark matter at LHC with mono-Higgs production, Phys. Lett. B 730 (2014) 178 [arXiv:1311.1511] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    L. Carpenter, A. DiFranzo, M. Mulhearn, C. Shimmin, S. Tulin and D. Whiteson, Mono-Higgs-boson: a new collider probe of dark matter, Phys. Rev. D 89 (2014) 075017 [arXiv:1312.2592] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Berlin, T. Lin and L.-T. Wang, Mono-Higgs detection of dark matter at the LHC, JHEP 06 (2014) 078 [arXiv:1402.7074] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    ATLAS collaboration, Search for dark matter produced in association with a Higgs boson decaying to two bottom quarks in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 072007 [arXiv:1510.06218] [INSPIRE].
  40. [40]
    ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 765 (2017) 11 [arXiv:1609.04572] [INSPIRE].
  41. [41]
    S. Ipek, D. McKeen and A.E. Nelson, A renormalizable model for the galactic center gamma ray excess from dark matter annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].ADSGoogle Scholar
  42. [42]
    J.M. No, Looking through the pseudoscalar portal into dark matter: novel mono-Higgs and mono-Z signatures at the LHC, Phys. Rev. D 93 (2016) 031701 [arXiv:1509.01110] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Bauer, U. Haisch and F. Kahlhoefer, Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators, arXiv:1701.07427 [INSPIRE].
  44. [44]
    Y. Bai, J. Bourbeau and T. Lin, Dark matter searches with a mono-Z jet, JHEP 06 (2015) 205 [arXiv:1504.01395] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    M. Autran, K. Bauer, T. Lin and D. Whiteson, Searches for dark matter in events with a resonance and missing transverse energy, Phys. Rev. D 92 (2015) 035007 [arXiv:1504.01386] [INSPIRE].ADSGoogle Scholar
  46. [46]
    A. Pais, Remark on baryon conservation, Phys. Rev. D 8 (1973) 1844 [INSPIRE].ADSGoogle Scholar
  47. [47]
    P. Fileviez Perez and M.B. Wise, Baryon and lepton number as local gauge symmetries, Phys. Rev. D 82 (2010) 011901 [Erratum ibid. D 82 (2010) 079901] [arXiv:1002.1754] [INSPIRE].
  48. [48]
    J.-Y. Liu, Y. Tang and Y.-L. Wu, Searching for Z gauge boson in an anomaly-free U(1) gauge family model, J. Phys. G 39 (2012) 055003 [arXiv:1108.5012] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    M. Duerr, P. Fileviez Perez and M.B. Wise, Gauge theory for baryon and lepton numbers with leptoquarks, Phys. Rev. Lett. 110 (2013) 231801 [arXiv:1304.0576] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    M. Duerr and P. Fileviez Perez, Baryonic dark matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    P. Fileviez Perez, S. Ohmer and H.H. Patel, Minimal theory for lepto-baryons, Phys. Lett. B 735 (2014) 283 [arXiv:1403.8029] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    M. Duerr and P. Fileviez Perez, Theory for baryon number and dark matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].ADSGoogle Scholar
  53. [53]
    M. Duerr, P. Fileviez Perez and J. Smirnov, Gamma lines from Majorana dark matter, Phys. Rev. D 93 (2016) 023509 [arXiv:1508.01425] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Ohmer and H.H. Patel, Leptobaryons as Majorana dark matter, Phys. Rev. D 92 (2015) 055020 [arXiv:1506.00954] [INSPIRE].ADSGoogle Scholar
  55. [55]
    A. Ekstedt, R. Enberg, G. Ingelman, J. Löfgren and T. Mandal, Constraining minimal anomaly free U(1) extensions of the Standard Model, JHEP 11 (2016) 071 [arXiv:1605.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].ADSGoogle Scholar
  58. [58]
    M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].CrossRefGoogle Scholar
  60. [60]
    D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].
  61. [61]
    C. Englert, M. McCullough and M. Spannowsky, s-channel dark matter simplified models and unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE].
  62. [62]
    G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, arXiv:1603.04156 [INSPIRE].
  63. [63]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  64. [64]
    J. Huang, T. Liu, L.-T. Wang and F. Yu, Supersymmetric exotic decays of the 125 GeV Higgs boson, Phys. Rev. Lett. 112 (2014) 221803 [arXiv:1309.6633] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Huang, T. Liu, L.-T. Wang and F. Yu, Supersymmetric subelectroweak scale dark matter, the galactic center gamma-ray excess and exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 115006 [arXiv:1407.0038] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, Search for dark matter in events with heavy quarks and missing transverse momentum in pp collisions with the ATLAS detector, Eur. Phys. J. C 75 (2015) 92 [arXiv:1410.4031] [INSPIRE].
  67. [67]
    ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-019, CERN, Geneva Switzerland, (2016).
  68. [68]
    ATLAS collaboration, Expected performance of boosted Higgs \( \left(\to b\overline{b}\right) \) boson identification with the ATLAS detector at \( \sqrt{s}=13 \) TeV, ATL-PHYS-PUB-2015-035, CERN, Geneva Switzerland, (2015).
  69. [69]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M. Cacciari, G.P. Salam and G. Soyez, The catchment area of jets, JHEP 04 (2008) 005 [arXiv:0802.1188] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    ATLAS collaboration, Performance of missing transverse momentum reconstruction in proton-proton collisions at 7 TeV with ATLAS, Eur. Phys. J. C 72 (2012) 1844 [arXiv:1108.5602] [INSPIRE].
  75. [75]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  78. [78]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
  79. [79]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  80. [80]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    F. Febres Cordero, L. Reina and D. Wackeroth, W - and Z-boson production with a massive bottom-quark pair at the Large Hadron Collider, Phys. Rev. D 80 (2009) 034015 [arXiv:0906.1923] [INSPIRE].ADSGoogle Scholar
  82. [82]
    G. Luisoni, C. Oleari and F. Tramontano, W bbj production at NLO with POWHEG+MiNLO, JHEP 04 (2015) 161 [arXiv:1502.01213] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  84. [84]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    L. Moneta et al., The RooStats project, PoS(ACAT2010)057 [arXiv:1009.1003] [INSPIRE].
  86. [86]
    A.L. Read, Presentation of search results: the CL s technique, J. Phys. G 28 (2002) 2693 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
  88. [88]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  89. [89]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  90. [90]
    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].
  91. [91]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  92. [92]
    CMS collaboration, Search for dark matter in final states with an energetic jet, or a hadronically decaying W or Z boson using 12.9 fb −1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-037, CERN, Geneva Switzerland, (2016).
  93. [93]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
  94. [94]
    M. Fairbairn, J. Heal, F. Kahlhoefer and P. Tunney, Constraints on Z models from LHC dijet searches and implications for dark matter, JHEP 09 (2016) 018 [arXiv:1605.07940] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    ATLAS collaboration, Search for new light resonances decaying to jet pairs and produced in association with a photon or a jet in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-070, CERN, Geneva Switzerland, (2016).
  96. [96]
    ATLAS collaboration, Search for new phenomena in dijet events with the ATLAS detector at \( \sqrt{s}=13 \) TeV with 2015 and 2016 data, ATLAS-CONF-2016-069, CERN, Geneva Switzerland, (2016).
  97. [97]
    CMS collaboration, Search for dijet resonances in proton-proton collisions at \( \sqrt{s}=13 \) TeV and constraints on dark matter and other models, Phys. Lett. B (2016) in press [arXiv:1611.03568] [INSPIRE].
  98. [98]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Michael Duerr
    • 1
  • Alexander Grohsjean
    • 1
  • Felix Kahlhoefer
    • 1
  • Bjoern Penning
    • 2
  • Kai Schmidt-Hoberg
    • 1
  • Christian Schwanenberger
    • 1
  1. 1.DESYHamburgGermany
  2. 2.University of Bristol, HH Wills Physics LaboratoryBristolU.K.

Personalised recommendations