Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators

Open Access
Regular Article - Theoretical Physics


We extend the \( \mathcal{O}\left({\alpha}_s^5\right) \) result of the analytic calculation of the quark mass anomalous dimension in pQCD [1] to the case of a generic gauge group. We present explicit formulas which express the relevant renormalization constants in terms of four-loop massless propagators. We also use our result to shed new light on the old puzzle of the absence of even zetas in results of perturbative calculations for a class of physical observables.


Perturbative QCD Renormalization Group 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Quark Mass and Field Anomalous Dimensions to \( \mathcal{O}\left({\alpha}_s^5\right) \), JHEP 10 (2014) 076 [arXiv:1402.6611] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    O. Tarasov, Anomalous Dimensions Of Quark Masses In Three Loop Approximation, JINR-P2-82-900 (1982) [INSPIRE].
  4. [4]
    S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
  5. [5]
    K.G. Chetyrkin, Quark mass anomalous dimension to O(α s4), Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].
  6. [6]
    J.A.M. Vermaseren, S.A. Larin and T. van Ritbergen, The four loop quark mass anomalous dimension and the invariant quark mass, Phys. Lett. B 405 (1997) 327 [hep-ph/9703284] [INSPIRE].
  7. [7]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Towards QCD running in 5 loops: quark mass anomalous dimension, PoS (RADCOR 2013) 056 [arXiv:1402.6606] [INSPIRE].
  8. [8]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Five-Loop Running of the QCD coupling constant, Phys. Rev. Lett. 118 (2017) 082002 [arXiv:1606.08659] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, The β-function of Quantum Chromodynamics and the effective Higgs-gluon-gluon coupling in five-loop order, PoS (LL2016) 010 [INSPIRE].
  10. [10]
    K. Chetyrkin and J.H. Kühn, Precision Measurements in Electron-Positron Annihilation: Theory and Experiment, PoS (LL2016) 047 [arXiv:1607.08374] [INSPIRE].
  11. [11]
    G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].
  12. [12]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep Inelastic Scattering Beyond the Leading Order in Asymptotically Free Gauge Theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  13. [13]
    K.G. Chetyrkin, J.H. Kühn and A. Kwiatkowski, QCD corrections to the e + e cross-section and the Z boson decay rate, hep-ph/9503396 [INSPIRE].
  14. [14]
    A.A. Vladimirov, Method for Computing Renormalization Group Functions in Dimensional Renormalization Scheme, Theor. Math. Phys. 43 (1980) 417 [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    D.I. Kazakov, O.V. Tarasov and A.A. Vladimirov, Calculation of Critical Exponents by Quantum Field Theory Methods, Sov. Phys. JETP 50 (1979) 521 [INSPIRE].ADSGoogle Scholar
  16. [16]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New Approach to Evaluation of Multiloop Feynman Integrals: The Gegenbauer Polynomial x Space Technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    O.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, The Gell-Mann-Low Function of QCD in the Three Loop Approximation, Phys. Lett. B 93 (1980) 429 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    K.G. Chetyrkin and V.A. Smirnov, R operation corrected, Phys. Lett. B 144 (1984) 419 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    K.G. Chetyrkin, Corrections of order α s3 to R had in pQCD with light gluinos, Phys. Lett. B 391 (1997) 402 [hep-ph/9608480] [INSPIRE].
  20. [20]
    N.N. Bogoliubov and O.S. Parasiuk, On the Multiplication of the causal function in the quantum theory of fields, Acta Math. 97 (1957) 227.MathSciNetCrossRefGoogle Scholar
  21. [21]
    N. Bogoliubov and D. Shirkov, Introduction to the Theory of Quantized Fields, 3rd edition, John Wiley & Sons Inc. (1980).Google Scholar
  22. [22]
    K.G. Chetyrkin, Combinatorics of R-, R −1 - and R -operations and asymptotic expansions of Feynman integrals in the limit of large momenta and masses, arXiv:1701.08627 [INSPIRE].
  23. [23]
    D.V. Batkovich and M. Kompaniets, Toolbox for multiloop Feynman diagrams calculations using R operation, J. Phys. Conf. Ser. 608 (2015) 012068 [arXiv:1411.2618] [INSPIRE].CrossRefGoogle Scholar
  24. [24]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    P.A. Baikov and K.G. Chetyrkin, Four Loop Massless Propagators: An Algebraic Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 186 [arXiv:1004.1153] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Master Integrals for Four-Loop Massless Propagators up to Transcendentality Weight Twelve, Nucl. Phys. B 856 (2012) 95 [arXiv:1108.0732] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    A.V. Smirnov and M. Tentyukov, Four Loop Massless Propagators: a Numerical Evaluation of All Master Integrals, Nucl. Phys. B 837 (2010) 40 [arXiv:1004.1149] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685 [INSPIRE].
  29. [29]
    R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser. 523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
  30. [30]
    T. Ueda, B. Ruijl and J.A.M. Vermaseren, Forcer: a FORM program for 4-loop massless propagators, PoS (LL2016) 070 [arXiv:1607.07318] [INSPIRE].
  31. [31]
    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, FORM, Diagrams and Topologies, PoS (LL2016) 073 [arXiv:1608.01834] [INSPIRE].
  32. [32]
    P.A. Baikov, A practical criterion of irreducibility of multi-loop Feynman integrals, Phys. Lett. B 634 (2006) 325 [hep-ph/0507053] [INSPIRE].
  33. [33]
    P.A. Baikov, Explicit solutions of the three loop vacuum integral recurrence relations, Phys. Lett. B 385 (1996) 404 [hep-ph/9603267] [INSPIRE].
  34. [34]
    J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
  35. [35]
    M. Steinhauser, T. Ueda and J.A.M. Vermaseren, Parallel versions of FORM and more, Nucl. Part. Phys. Proc. 261-262 (2015) 45 [arXiv:1501.07119] [INSPIRE].
  36. [36]
    W.E. Caswell and A.D. Kennedy, A simple approach to renormalization theory, Phys. Rev. D 25 (1982) 392 [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  37. [37]
    J.C. Collins, Normal Products in Dimensional Regularization, Nucl. Phys. B 92 (1975) 477 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    M. Misiak and M. Münz, Two loop mixing of dimension five flavor changing operators, Phys. Lett. B 344 (1995) 308 [hep-ph/9409454] [INSPIRE].
  39. [39]
    T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The Four loop β-function in quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390] [INSPIRE].
  40. [40]
    K.G. Chetyrkin, M. Misiak and M. Münz, β-functions and anomalous dimensions up to three loops, Nucl. Phys. B 518 (1998) 473 [hep-ph/9711266] [INSPIRE].
  41. [41]
    T. Luthe, A. Maier, P. Marquard and Y. Schröder, Five-loop quark mass and field anomalous dimensions for a general gauge group, JHEP 01 (2017) 081 [arXiv:1612.05512] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    T. Luthe, A. Maier, P. Marquard and Y. Schröder, Complete renormalization of QCD at five loops, JHEP 03 (2017) 020 [arXiv:1701.07068] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A.A. Vladimirov, Methods of Multiloop Calculations and the Renormalization Group Analysis of ϕ 4 Theory, Theor. Math. Phys. 36 (1979) 732 [INSPIRE].CrossRefGoogle Scholar
  44. [44]
    K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Higher Order Corrections to σ tot(e + e Hadrons) in Quantum Chromodynamics, Phys. Lett. B 85 (1979) 277 [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.G. Gorishnii, A.L. Kataev and S.A. Larin, The O(α s3)-corrections to σ tot(e + e hadrons) and Γ(τ ν τ + hadrons) in QCD, Phys. Lett. B 259 (1991) 144 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, The five-loop β-function of Yang-Mills theory with fermions, JHEP 02 (2017) 090 [arXiv:1701.01404] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  47. [47]
    T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].
  48. [48]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Adler Function, Bjorken Sum Rule and the Crewther Relation to Order α s4 in a General Gauge Theory, Phys. Rev. Lett. 104 (2010) 132004 [arXiv:1001.3606] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    D.J. Broadhurst, Dimensionally continued multiloop gauge theory, hep-th/9909185 [INSPIRE].
  50. [50]
    P.A. Baikov, K.G. Chetyrkin and J.H. Kühn, Scalar correlator at \( \mathcal{O}\left({\alpha}_s^4\right) \) , Higgs decay into b-quarks and bounds on the light quark masses, Phys. Rev. Lett. 96 (2006) 012003 [hep-ph/0511063] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations