Curtailing the dark side in non-standard neutrino interactions

  • Pilar Coloma
  • Peter B. Denton
  • M. C. Gonzalez-Garcia
  • Michele Maltoni
  • Thomas Schwetz
Open Access
Regular Article - Theoretical Physics

Abstract

In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.

Keywords

Neutrino Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Pontecorvo, Neutrino Experiments and the Problem of Conservation of Leptonic Charge, Sov. Phys. JETP 26 (1968) 984 [INSPIRE].ADSGoogle Scholar
  2. [2]
    V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. 28B (1969) 493 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  4. [4]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Wolfenstein, Neutrino Oscillations in Matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].ADSGoogle Scholar
  7. [7]
    J.W.F. Valle, Resonant Oscillations of Massless Neutrinos in Matter, Phys. Lett. B 199 (1987) 432 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M.M. Guzzo, A. Masiero and S.T. Petcov, On the MSW effect with massless neutrinos and no mixing in the vacuum, Phys. Lett. B 260 (1991) 154 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    O.G. Miranda and H. Nunokawa, Non standard neutrino interactions: current status and future prospects, New J. Phys. 17 (2015) 095002 [arXiv:1505.06254] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.P. Mikheev and A.Yu. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [INSPIRE].Google Scholar
  12. [12]
    M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, Testing matter effects in propagation of atmospheric and long-baseline neutrinos, JHEP 05 (2011) 075 [arXiv:1103.4365] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    O.G. Miranda, M.A. Tortola and J.W.F. Valle, Are solar neutrino oscillations robust?, JHEP 10 (2006) 008 [hep-ph/0406280] [INSPIRE].
  15. [15]
    P. Bakhti and Y. Farzan, Shedding light on LMA-Dark solar neutrino solution by medium baseline reactor experiments: JUNO and RENO-50, JHEP 07 (2014) 064 [arXiv:1403.0744] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    P. Coloma and T. Schwetz, Generalized mass ordering degeneracy in neutrino oscillation experiments, Phys. Rev. D 94 (2016) 055005 [arXiv:1604.05772] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Davidson, C. Pena-Garay, N. Rius and A. Santamaria, Present and future bounds on nonstandard neutrino interactions, JHEP 03 (2003) 011 [hep-ph/0302093] [INSPIRE].
  18. [18]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, General bounds on non-standard neutrino interactions, JHEP 08 (2009) 090 [arXiv:0907.0097] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C. Biggio, M. Blennow and E. Fernandez-Martinez, Loop bounds on non-standard neutrino interactions, JHEP 03 (2009) 139 [arXiv:0902.0607] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F.J. Escrihuela, O.G. Miranda, M.A. Tortola and J.W.F. Valle, Constraining nonstandard neutrino-quark interactions with solar, reactor and accelerator data, Phys. Rev. D 80 (2009) 105009 [Erratum ibid. D 80 (2009) 129908] [arXiv:0907.2630] [INSPIRE].
  21. [21]
    COHERENT collaboration, D. Akimov et al., The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE].
  22. [22]
    H.T. Wong, Ultra-Low-Energy Germanium Detector for Neutrino-Nucleus Coherent Scattering and Dark Matter Searches, Mod. Phys. Lett. A 23 (2008) 1431 [arXiv:0803.0033] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    CONNIE collaboration, A. Aguilar-Arevalo et al., The CONNIE experiment, J. Phys. Conf. Ser. 761 (2016) 012057 [arXiv:1608.01565] [INSPIRE].
  24. [24]
    CONNIE collaboration, A. Aguilar-Arevalo et al., Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE), 2016 JINST 11 P07024 [arXiv:1604.01343] [INSPIRE].
  25. [25]
    MINER collaboration, G. Agnolet et al., Background Studies for the MINER Coherent Neutrino Scattering Reactor Experiment, Nucl. Instrum. Meth. A 853 (2017) 53 [arXiv:1609.02066] [INSPIRE].
  26. [26]
    J. Billard et al., Coherent Neutrino Scattering with Low Temperature Bolometers at CHOOZ Reactor Complex, arXiv:1612.09035 [INSPIRE].
  27. [27]
    D.G. Cerdeño, M. Fairbairn, T. Jubb, P.A.N. Machado, A.C. Vincent and C. Bœhm, Physics from solar neutrinos in dark matter direct detection experiments, JHEP 05 (2016) 118 [Erratum ibid. 09 (2016) 048] [arXiv:1604.01025] [INSPIRE].
  28. [28]
    CHARM collaboration, J. Dorenbosch et al., Experimental Verification of the Universality of ν e and ν μ Coupling to the Neutral Weak Current, Phys. Lett. B 180 (1986) 303 [INSPIRE].
  29. [29]
    NuTeV collaboration, G.P. Zeller et al., A Precise determination of electroweak parameters in neutrino nucleon scattering, Phys. Rev. Lett. 88 (2002) 091802 [Erratum ibid. 90 (2003) 239902] [hep-ex/0110059] [INSPIRE].
  30. [30]
    M. Kobayashi and T. Maskawa, CP Violation in the Renormalizable Theory of Weak Interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    M.B. Gavela, D. Hernandez, T. Ota and W. Winter, Large gauge invariant non-standard neutrino interactions, Phys. Rev. D 79 (2009) 013007 [arXiv:0809.3451] [INSPIRE].ADSGoogle Scholar
  32. [32]
    S. Antusch, J.P. Baumann and E. Fernandez-Martinez, Non-Standard Neutrino Interactions with Matter from Physics Beyond the Standard Model, Nucl. Phys. B 810 (2009) 369 [arXiv:0807.1003] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    M.B. Wise and Y. Zhang, Effective Theory and Simple Completions for Neutrino Interactions, Phys. Rev. D 90 (2014) 053005 [arXiv:1404.4663] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Bœhm, Implications of a new light gauge boson for neutrino physics, Phys. Rev. D 70 (2004) 055007 [hep-ph/0405240] [INSPIRE].
  35. [35]
    Y. Farzan, A model for large non-standard interactions of neutrinos leading to the LMA-Dark solution, Phys. Lett. B 748 (2015) 311 [arXiv:1505.06906] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    Y. Farzan and I.M. Shoemaker, Lepton Flavor Violating Non-Standard Interactions via Light Mediators, JHEP 07 (2016) 033 [arXiv:1512.09147] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    Y. Farzan and J. Heeck, Neutrinophilic nonstandard interactions, Phys. Rev. D 94 (2016) 053010 [arXiv:1607.07616] [INSPIRE].ADSGoogle Scholar
  38. [38]
    D.V. Forero and W.-C. Huang, Sizable NSI from the SU(2)L scalar doublet-singlet mixing and the implications in DUNE, JHEP 03 (2017) 018 [arXiv:1608.04719] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    A. Friedland, M.L. Graesser, I.M. Shoemaker and L. Vecchi, Probing Nonstandard Standard Model Backgrounds with LHC Monojets, Phys. Lett. B 714 (2012) 267 [arXiv:1111.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Buarque Franzosi, M.T. Frandsen and I.M. Shoemaker, New or ν missing energy: Discriminating dark matter from neutrino interactions at the LHC, Phys. Rev. D 93 (2016) 095001 [arXiv:1507.07574] [INSPIRE].ADSGoogle Scholar
  41. [41]
    KamLAND collaboration, A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, Phys. Rev. D 83 (2011) 052002 [arXiv:1009.4771] [INSPIRE].
  42. [42]
    B.T. Cleveland et al., Measurement of the solar electron neutrino flux with the Homestake chlorine detector, Astrophys. J. 496 (1998) 505 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    F. Kaether, W. Hampel, G. Heusser, J. Kiko and T. Kirsten, Reanalysis of the GALLEX solar neutrino flux and source experiments, Phys. Lett. B 685 (2010) 47 [arXiv:1001.2731] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    SAGE collaboration, J.N. Abdurashitov et al., Measurement of the solar neutrino capture rate with gallium metal. III: Results for the 2002-2007 data-taking period, Phys. Rev. C 80 (2009) 015807 [arXiv:0901.2200] [INSPIRE].
  45. [45]
    Super-Kamiokande collaboration, J. Hosaka et al., Solar neutrino measurements in Super-Kamiokande-I, Phys. Rev. D 73 (2006) 112001 [hep-ex/0508053] [INSPIRE].
  46. [46]
    Super-Kamiokande collaboration, J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II, Phys. Rev. D 78 (2008) 032002 [arXiv:0803.4312] [INSPIRE].
  47. [47]
    Super-Kamiokande collaboration, K. Abe et al., Solar neutrino results in Super-Kamiokande-III, Phys. Rev. D 83 (2011) 052010 [arXiv:1010.0118] [INSPIRE].
  48. [48]
    Super-Kamiokande collaboration, M. Smy, Super-Kamiokande’s solar ν results, Nucl. Phys. Proc. Suppl. 235-236 (2013) 49 [INSPIRE].
  49. [49]
    G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Borexino collaboration, G. Bellini et al., Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector, Phys. Rev. D 82 (2010) 033006 [arXiv:0808.2868] [INSPIRE].
  51. [51]
    SNO collaboration, B. Aharmim et al., Determination of the ν e and total 8 B solar neutrino fluxes with the Sudbury neutrino observatory phase I data set, Phys. Rev. C 75 (2007) 045502 [nucl-ex/0610020] [INSPIRE].
  52. [52]
    SNO collaboration, B. Aharmim et al., Electron energy spectra, fluxes and day-night asymmetries of B-8 solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory, Phys. Rev. C 72 (2005) 055502 [nucl-ex/0502021] [INSPIRE].
  53. [53]
    SNO collaboration, B. Aharmim et al., An Independent Measurement of the Total Active B-8 Solar Neutrino Flux Using an Array of He-3 Proportional Counters at the Sudbury Neutrino Observatory, Phys. Rev. Lett. 101 (2008) 111301 [arXiv:0806.0989] [INSPIRE].
  54. [54]
    SNO collaboration, B. Aharmim et al., Combined Analysis of all Three Phases of Solar Neutrino Data from the Sudbury Neutrino Observatory, Phys. Rev. C 88 (2013) 025501 [arXiv:1109.0763] [INSPIRE].
  55. [55]
    L.K. Pik, Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande, Ph.D. Thesis, University of Tokyo (2012) [INSPIRE].
  56. [56]
    MINOS collaboration, P. Adamson et al., Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
  57. [57]
    MINOS collaboration, P. Adamson et al., Electron neutrino and antineutrino appearance in the full MINOS data sample, Phys. Rev. Lett. 110 (2013) 171801 [arXiv:1301.4581] [INSPIRE].
  58. [58]
    M. Ikeda, Recent results from T2K, in Rencontres de Moriond EW, 2-9 March 2013.Google Scholar
  59. [59]
    CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].
  60. [60]
    Palo Verde collaboration, A. Piepke, Final results from the Palo Verde neutrino oscillation experiment, Prog. Part. Nucl. Phys. 48 (2002) 113 [INSPIRE].
  61. [61]
    Double CHOOZ collaboration, Y. Abe et al., Reactor electron antineutrino disappearance in the Double CHOOZ experiment, Phys. Rev. D 86 (2012) 052008 [arXiv:1207.6632] [INSPIRE].
  62. [62]
    Daya Bay collaboration, F.P. An et al., Improved Measurement of Electron Antineutrino Disappearance at Daya Bay, Chin. Phys. C 37 (2013) 011001 [arXiv:1210.6327] [INSPIRE].
  63. [63]
    S.H. Seo, RENO, PoS(Neutel 2013)018.
  64. [64]
    Y. Declais et al., Study of reactor anti-neutrino interaction with proton at Bugey nuclear power plant, Phys. Lett. B 338 (1994) 383 [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    Y. Declais et al., Search for neutrino oscillations at 15-meters, 40-meters and 95-meters from a nuclear power reactor at Bugey, Nucl. Phys. B 434 (1995) 503 [INSPIRE].ADSGoogle Scholar
  66. [66]
    A.A. Kuvshinnikov, L.A. Mikaelyan, S.V. Nikolaev, M.D. Skorokhvatov and A.V. Etenko, Measuring the anti-electron-neutrino +pn + e + cross-section and beta decay axial constant in a new experiment at Rovno NPP reactor (in Russian), JETP Lett. 54 (1991) 253 [INSPIRE].ADSGoogle Scholar
  67. [67]
    A.I. Afonin, S.N. Ketov, V.I. Kopeikin, L.A. Mikaelyan, M.D. Skorokhvatov and S.V. Tolokonnikov, A Study of the Reaction \( {\overline{\nu}}_e+P\to {e}^{+}+N \) on a Nuclear Reactor, Sov. Phys. JETP 67 (1988) 213 [INSPIRE].Google Scholar
  68. [68]
    G.S. Vidyakin et al., Detection of Anti-neutrinos in the Flux From Two Reactors, Sov. Phys. JETP 66 (1987) 243 [INSPIRE].Google Scholar
  69. [69]
    G.S. Vidyakin et al., Limitations on the characteristics of neutrino oscillations, JETP Lett. 59 (1994) 390 [INSPIRE].ADSGoogle Scholar
  70. [70]
    H. Kwon et al., Search for Neutrino Oscillations at a Fission Reactor, Phys. Rev. D 24 (1981) 1097 [INSPIRE].ADSGoogle Scholar
  71. [71]
    CALTECH-SIN-TUM collaboration, G. Zacek et al., Neutrino Oscillation Experiments at the Gosgen Nuclear Power Reactor, Phys. Rev. D 34 (1986) 2621 [INSPIRE].
  72. [72]
    Z.D. Greenwood et al., Results of a two position reactor neutrino oscillation experiment, Phys. Rev. D 53 (1996) 6054 [INSPIRE].ADSGoogle Scholar
  73. [73]
    A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino-matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [INSPIRE].
  74. [74]
    J. Erler and S. Su, The Weak Neutral Current, Prog. Part. Nucl. Phys. 71 (2013) 119 [arXiv:1303.5522] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G.P. Zeller, A precise measurement of the weak mixing angle in neutrino-nucleon scattering, Ph.D. Thesis, Northwestern U. (2002) [INSPIRE].
  76. [76]
    NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].
  77. [77]
    W. Bentz, I.C. Cloet, J.T. Londergan and A.W. Thomas, Reassessment of the NuTeV determination of the weak mixing angle, Phys. Lett. B 693 (2010) 462 [arXiv:0908.3198] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Barranco, O.G. Miranda and T.I. Rashba, Probing new physics with coherent neutrino scattering off nuclei, JHEP 12 (2005) 021 [hep-ph/0508299] [INSPIRE].
  79. [79]
    K. Scholberg, Prospects for measuring coherent neutrino-nucleus elastic scattering at a stopped-pion neutrino source, Phys. Rev. D 73 (2006) 033005 [hep-ex/0511042] [INSPIRE].
  80. [80]
    M. Lindner, W. Rodejohann and X.-J. Xu, Coherent Neutrino-Nucleus Scattering and new Neutrino Interactions, JHEP 03 (2017) 097 [arXiv:1612.04150] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    J.B. Dent, B. Dutta, S. Liao, J.L. Newstead, L.E. Strigari and J.W. Walker, Probing light mediators at ultra-low threshold energies with coherent elastic neutrino-nucleus scattering, arXiv:1612.06350 [INSPIRE].
  82. [82]
    R.L. Kustom, An Overview of the Spallation Neutron Source project, eConf C 000821 (2000) TU101 [physics/0008212] [INSPIRE].
  83. [83]
    R. Cooper, COHERENT at the Spallation Neutron Source, in International Conference of High Energy Physics, (2016).Google Scholar
  84. [84]
    C.J. Horowitz, K.J. Coakley and D.N. McKinsey, Supernova observation via neutrino-nucleus elastic scattering in the CLEAN detector, Phys. Rev. D 68 (2003) 023005 [astro-ph/0302071] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Pilar Coloma
    • 1
  • Peter B. Denton
    • 1
    • 2
  • M. C. Gonzalez-Garcia
    • 3
    • 4
    • 5
  • Michele Maltoni
    • 6
  • Thomas Schwetz
    • 7
  1. 1.Theoretical Physics DepartmentFermi National Accelerator LaboratoryBataviaU.S.A.
  2. 2.Niels Bohr International AcademyUniversity of Copenhagen, The Niels Bohr InstituteCopenhagenDenmark
  3. 3.Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del CosmosUniversitat de BarcelonaBarcelonaSpain
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  5. 5.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  6. 6.Instituto de Física Teórica UAM/CSICUniversidad Autónoma de MadridMadridSpain
  7. 7.Institut für Kernphysik, Karlsruher Institut für Technologie (KIT)KarlsruheGermany

Personalised recommendations