Point-particle effective field theory I: classical renormalization and the inverse-square potential

Abstract

Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential’s singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original prob-lem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    C.P. Burgess, P. Hayman, M. Williams and L. Zalavári, Point-particle effective field theory II: relativistic effects and coulomb/inverse-square competition, to appear.

  2. [2]

    C.P. Burgess, F. Metz and M. Rummel, Point-particle effective field theory III: fermions and the Dirac equation, to appear.

  3. [3]

    C.P. Burgess, P. Hayman, M. Rummel and L. Zalavári, The proton-radius problem and point-particle effective field theory, to appear.

  4. [4]

    B. Holstein, Anomalies for pedestrians, Am. J. Phys. 61 (1993) 142.

    ADS  Article  Google Scholar 

  5. [5]

    A.M. Essin and D.J. Griffiths, Quantum mechanics of the 1/x 2 potential, Am. J. Phys. 74 (2006) 109.

    ADS  Article  Google Scholar 

  6. [6]

    S.A. Coon and B.R. Holstein, Anomalies in quantum mechanics: the 1/r 2 potential, Am. J. Phys. 70 (2002) 513 [quant-ph/0202091] [INSPIRE].

  7. [7]

    B. Kayser, Classical limit of scattering in a 1/r 2 potential, Am. J. Phys. 42 (1974) 960.

    ADS  Article  Google Scholar 

  8. [8]

    H.E. Camblong, L.N. Epele, H. Fanchiotti and C.A. Garcia Canal, Renormalization of the inverse square potential, Phys. Rev. Lett. 85 (2000) 1590 [hep-th/0003014] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    H.E. Camblong, L.N. Epele, H. Fanchiotti and C.A. Garcia Canal, Dimensional transmutation and dimensional regularization in quantum mechanics. 1. General theory, Annals Phys. 287 (2001) 14 [hep-th/0003255] [INSPIRE].

  10. [10]

    H.E. Camblong, L.N. Epele, H. Fanchiotti and C.A. Garcia Canal, Dimensional transmutation and dimensional regularization in quantum mechanics. 2. Rotational invariance, Annals Phys. 287 (2001) 57 [hep-th/0003267] [INSPIRE].

  11. [11]

    G.N.J. Ananos, H.E. Camblong and C.R. Ordonez, SO(2, 1) conformal anomaly: beyond contact interactions, Phys. Rev. D 68 (2003) 025006 [hep-th/0302197] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  12. [12]

    E. Braaten and D. Phillips, The renormalization group limit cycle for the 1/r 2 potential, Phys. Rev. A 70 (2004) 052111 [hep-th/0403168] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    H.W. Hammer and B.G. Swingle, On the limit cycle for the 1/r 2 potential in momentum space, Annals Phys. 321 (2006) 306 [quant-ph/0503074] [INSPIRE].

  14. [14]

    B. Long and U. van Kolck, Renormalization of singular potentials and power counting, Annals Phys. 323 (2008) 1304 [arXiv:0707.4325] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  15. [15]

    D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].

    ADS  MATH  Google Scholar 

  16. [16]

    A.K. Roy, Studies on some singular potentials in quantum mechanics, Int. J. Quantum Chem. 104 (2005) 861 [arXiv:1307.2687].

    ADS  Article  Google Scholar 

  17. [17]

    M. Andrews, Singular potentials in one dimension, Am. J. Phys. 44 (1976) 1064.

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    K.M. Case, Singular potentials, Phys. Rev. 80 (1950) 797.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    W. Frank, D.J. Land and R.M. Spector, Singular potentials, Rev. Mod. Phys. 43 (1971) 36 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    H. Weyl, Über gewöhnliche Differentialgleichungen mit Singularitäten und de zeugehörigen Entwicklungen willkürlicher Funktionen, Math. Ann. 68 (1910) 220.

    MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    J. von Neumann, Allgemeine Eigenwertheorie Hermitescher funktionaloperatoren, Math. Ann. 102 (1929) 49.

    Article  MATH  Google Scholar 

  22. [22]

    M.H. Stone, On one-parameter unitary groups in Hilbert space, Ann. Math. 33 (1932) 643.

    MathSciNet  Article  MATH  Google Scholar 

  23. [23]

    A.Z. Capri, Selfadjointness and spontaneously broken symmetry, Am. J. Phys. 45 (1977) 823 [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    M.J. Dupré, J. A. Goldstein and M. Levy, The nearest self-adjoint operator, J. Chem. Phys. 72 (1980) 780.

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    G. Bonneau, J. Faraut and G. Valent, Selfadjoint extensions of operators and the teaching of quantum mechanics, Am. J. Phys. 69 (2001) 322 [quant-ph/0103153] [INSPIRE].

  26. [26]

    J.L. Borg and J.V. Pulé, Pauli approximations to the sef-adjoint extensions of the Aharonov-Bohm Hamiltonian, J. Math. Phys. 44 (2003) 4385.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    C.J. Fewster, On the energy levels of the hydrogen atom, hep-th/9305102 [INSPIRE].

  28. [28]

    V.S. Araujo, F.A.B. Coutinho, J.F. Perez, Operator domains and self-adjoint operators, Am. J. Phys. 72 (2004) 203.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. [29]

    H.E. Camblong, L.N. Epele, H. Fanchiotti, C.A. Garcia Canal and C.R. Ordonez, On the inequivalence of renormalization and self-adjoint extensions for quantum singular interactions, Phys. Lett. A 364 (2007) 458 [hep-th/0604018] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    T. Fülöp, Singular potentials in quantum mechanics and ambiguity in the self-adjoint hamiltonian, SIGMA 3 (2007) 107 [arXiv:0708.0866].

    ADS  MathSciNet  MATH  Google Scholar 

  31. [31]

    V.S. Araujo, F.A.B. Coutinho, F.M. Toyama, The time-dependent Schrödinger equation: the need for the Hamiltonian to be self-adjoint, Braz. J. Phys. 38 (2008) 178.

    ADS  Article  Google Scholar 

  32. [32]

    D.M. Gitman, I.V. Tyutin and B.L. Voronov, Self-adjoint extensions and spectral analysis in Calogero problem, arXiv:0903.5277 [INSPIRE].

  33. [33]

    S. Moroz and R. Schmidt, Nonrelativistic inverse square potential, scale anomaly and complex extension, Annals Phys. 325 (2010) 491 [arXiv:0909.3477] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  34. [34]

    T. Nadareishvili and A. Khelashvili, Pragmatic SAE procedure in the Schrödinger equation for the inverse-square-like potentials, arXiv:1209.2864 [INSPIRE].

  35. [35]

    N. Arrizabalaga, J. Duoandikoetxea and L. Vega, Self-adjoint extensions of Dirac operators with a Coulomb type singularity, J. Math. Phys. 54 (2013) 041504.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  36. [36]

    L. A. González-Díaz and S. Díaz-Solórzano, Bound states and scattering coefficients of self-adjoint Hamiltonians with a mass jump, J. Math. Phys. 54 (2013) 042106.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  37. [37]

    D. Bouaziz and M. Bawin, Singular inverse-square potential: renormalization and self-adjoint extensions for medium to weak coupling, Phys. Rev. A 89 (2014) 022113 [arXiv:1402.5325] [INSPIRE].

    ADS  Article  Google Scholar 

  38. [38]

    A.D. Alhaidari, Renormalization of the strongly attractive inverse square potential: taming the singularity, Found. Phys. 44 (2014) 1049 [arXiv:1309.1683] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    A. Khelashvili and T. Nadareishvili, Singular behavior of the Laplace operator in polar spherical coordinates and some of its consequences for the radial wave function at the origin of coordinates, Phys. Part. Nucl. Lett. 12 (2015) 11 [arXiv:1502.04008] [INSPIRE].

    Article  Google Scholar 

  40. [40]

    V. Efimov, Energy levels arising form the resonant two-body forces in a three-body system, Phys. Lett. 33B (1970) 563 [INSPIRE].

    ADS  Article  Google Scholar 

  41. [41]

    A.C. Fonseca, E.F. Redish and P.E. Shanley, Efimov effect in an analytically solvable model, Nucl. Phys. A 320 (1979) 273 [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    V. Efimov, Low-energy properties of three resonantly interacting particles, Sov. J. Nucl. Phys. 29 (1979) 546 [Yad. Fiz. 29 (1979) 1058] [INSPIRE].

  43. [43]

    E. Braaten and H.W. Hammer, Universality in few-body systems with large scattering length, Phys. Rept. 428 (2006) 259 [cond-mat/0410417] [INSPIRE].

  44. [44]

    E. Braaten and H.W. Hammer, Efimov physics in cold atoms, Annals Phys. 322 (2007) 120 [cond-mat/0612123] [INSPIRE].

  45. [45]

    L. Platter, Few-body systems and the pionless effective field theory, PoS (CD09) 104 [arXiv:0910.0031] [INSPIRE].

  46. [46]

    H.W. Hammer and L. Platter, Efimov states in nuclear and particle physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 207 [arXiv:1001.1981].

    ADS  Article  Google Scholar 

  47. [47]

    D. MacNeill and F. Zhou, Pauli blocking effect on Efimov states near Feshbach resonance, Phys. Rev. Lett. 106 (2011) 145301 [arXiv:1011.0006].

    ADS  Article  Google Scholar 

  48. [48]

    H. W. Hammer and L. Platter, Efimov physics from a renormalization group perspective, Phil. Trans. Roy. Soc. A 369 (2011) 2679.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    T. Kraemer et al., Evidence for Efimov quantum states in an ultracold gas of caesium atoms, Nature 440 (2006) 315.

    ADS  Article  Google Scholar 

  50. [50]

    A.D. Alhaidari and H. Bahlouli, Electron in the field of a molecule with an electric dipole moment, Phys. Rev. Lett. 100 (2008) 110401 [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    A.D. Alhaidari, Charged particle in the field an electric quadrupole in two dimensions, J. Phys. A 40 (2007) 14843 [arXiv:0709.3580].

    ADS  MathSciNet  MATH  Google Scholar 

  52. [52]

    S. Hikami, A.I. Larkin and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63 (1980) 707.

    ADS  Article  Google Scholar 

  53. [53]

    A. De Martino, D. Kloepfer, D. Matrasulov and R. Egger, Electric dipole induced universality for Dirac fermions in graphene, Phys. Rev. Lett. 112 (2014) 186603 [arXiv:1401.5992].

    ADS  Article  Google Scholar 

  54. [54]

    A. Ashtekar and M. Bojowald, Quantum geometry and the Schwarzschild singularity, Class. Quant. Grav. 23 (2006) 391 [gr-qc/0509075] [INSPIRE].

  55. [55]

    J. Denschlag, G. Umshaus and J. Schmiedmayer, Probing a singular potential with cold atoms: a neutral atom and a charged wire, Phys. Rev. Lett. 81 (1998) 737.

    ADS  Article  Google Scholar 

  56. [56]

    E. Poisson and C.M. Will, Gravitational waves from inspiraling compact binaries: Parameter estimation using second postNewtonian wave forms, Phys. Rev. D 52 (1995) 848 [gr-qc/9502040] [INSPIRE].

  57. [57]

    W.D. Goldberger and I.Z. Rothstein, An effective field theory of gravity for extended objects, Phys. Rev. D 73 (2006) 104029 [hep-th/0409156] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. [58]

    W.D. Goldberger and I.Z. Rothstein, Dissipative effects in the worldline approach to black hole dynamics, Phys. Rev. D 73 (2006) 104030 [hep-th/0511133] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. [59]

    B. Kol and M. Smolkin, Non-relativistic gravitation: from Newton to Einstein and back, Class. Quant. Grav. 25 (2008) 145011 [arXiv:0712.4116] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  60. [60]

    B. Kol and M. Smolkin, Classical effective field theory and caged black holes, Phys. Rev. D 77 (2008) 064033 [arXiv:0712.2822] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  61. [61]

    T. Damour and A. Nagar, An improved analytical description of inspiralling and coalescing black-hole binaries, Phys. Rev. D 79 (2009) 081503 [arXiv:0902.0136] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    B. Kol and M. Smolkin, Dressing the post-newtonian two-body problem and classical effective field theory, Phys. Rev. D 80 (2009) 124044 [arXiv:0910.5222] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    R.A. Porto, A. Ross and I.Z. Rothstein, Spin induced multipole moments for the gravitational wave amplitude from binary inspirals to 2.5 post-newtonian order, JCAP 09 (2012) 028 [arXiv:1203.2962] [INSPIRE].

  64. [64]

    W.D. Goldberger, A. Ross and I.Z. Rothstein, Black hole mass dynamics and renormalization group evolution, Phys. Rev. D 89 (2014) 124033 [arXiv:1211.6095] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    C.P. Burgess, R. Diener and M. Williams, A problem with δ-functions: stress-energy constraints on bulk-brane matching (with comments on arXiv:1508.01124), JHEP 01 (2016) 017 [arXiv:1509.04201] [INSPIRE].

  66. [66]

    W.D. Goldberger and M.B. Wise, Renormalization group flows for brane couplings, Phys. Rev. D 65 (2002) 025011 [hep-th/0104170] [INSPIRE].

    ADS  Google Scholar 

  67. [67]

    C. de Rham, The effective field theory of codimension-two branes, JHEP 01 (2008) 060 [arXiv:0707.0884] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  68. [68]

    E. Dudas, C. Papineau and V.A. Rubakov, Flowing to four dimensions, JHEP 03 (2006) 085 [hep-th/0512276] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. [69]

    C.P. Burgess, C. de Rham and L. van Nierop, The hierarchy problem and the self-localized Higgs, JHEP 08 (2008) 061 [arXiv:0802.4221] [INSPIRE].

    ADS  Article  Google Scholar 

  70. [70]

    R. Diener and C.P. Burgess, Bulk stabilization, the extra-dimensional Higgs portal and missing energy in Higgs events, JHEP 05 (2013) 078 [arXiv:1302.6486] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  71. [71]

    C.P. Burgess, D. Hoover, C. de Rham and G. Tasinato, Effective Field theories and matching for codimension-2 branes, JHEP 03 (2009) 124 [arXiv:0812.3820] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. [72]

    A. Bayntun, C.P. Burgess and L. van Nierop, Codimension-2 brane-bulk matching: examples from six and ten dimensions, New J. Phys. 12 (2010) 075015 [arXiv:0912.3039] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    A. Chodos and E. Poppitz, Warp factors and extended sources in two transverse dimensions, Phys. Lett. B 471 (1999) 119 [hep-th/9909199] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. [74]

    M. Peloso, L. Sorbo and G. Tasinato, Standard 4D gravity on a brane in six dimensional flux compactifications, Phys. Rev. D 73 (2006) 104025 [hep-th/0603026] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  75. [75]

    C.P. Burgess, D. Hoover and G. Tasinato, UV caps and modulus stabilization for 6D gauged chiral supergravity, JHEP 09 (2007) 124 [arXiv:0705.3212] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    F.A. Berezin and L.D. Faddeev, A remark on Schrodingers equation with a singular potential, Sov. Math. Dokl. 2 (1961) 372 [Dokl. Akad. Nauk Ser. Fiz. 137 (1961) 1011] [INSPIRE].

  77. [77]

    R. Jackiw, Delta function potentials in two-dimensional and three-dimensional quantum mechanics,in Diverse topics in theoretical and mathematical physics, R. Jackiw ed., World Sceitnific, Singapore (1991).

  78. [78]

    S. Deser, M.L. Goldberger, K. Baumann and W.E. Thirring, Energy level displacements in pi mesonic atoms, Phys. Rev. 96 (1954) 774 [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    C.G. Callan Jr., Monopole catalysis of baryon decay, Nucl. Phys. B 212 (1983) 391 [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    V.A. Rubakov, Structure of the vacuum in gauge theories and monopole catalysis of proton decay, Sov. Phys. Usp. 26 (1983) 1111 [Usp. Fiz. Nauk 141 (1983) 714] [INSPIRE].

  81. [81]

    I. Affleck and J. Sagi, Monopole catalyzed baryon decay: A Boundary conformal field theory approach, Nucl. Phys. B 417 (1994) 374 [hep-th/9311056] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  82. [82]

    Y. Schnir, Magnetic monopoles, Springer, Germany (2015).

    Google Scholar 

  83. [83]

    J. Preskill, Magnetic monopoles, Ann. Rev. Nucl. Part. Sci. 34 (1984) 461.

    ADS  Article  Google Scholar 

  84. [84]

    L.D. Landau and E.M. Lifshitz, Quantum mechanics: non-relativistic theory, Pergamon Press, U.K. (1976).

    MATH  Google Scholar 

  85. [85]

    J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to László Zalavári.

Additional information

ArXiv ePrint: 1612.07313

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burgess, C., Hayman, P., Williams, M. et al. Point-particle effective field theory I: classical renormalization and the inverse-square potential. J. High Energ. Phys. 2017, 106 (2017). https://doi.org/10.1007/JHEP04(2017)106

Download citation

Keywords

  • Effective field theories
  • Nonperturbative Effects
  • Renormalization Group