Exploring the nearly degenerate stop region with sbottom decays

Abstract

A light stop with mass almost degenerate with the lightest neutralino has important connections with both naturalness and dark matter relic abundance. This region is also very hard to probe at colliders. In this paper, we demonstrate the potential of searching for such stop particles at the LHC from sbottom decays, focusing on two channels with final states \( \mathbf{2}\mathbf{\ell }+{\boldsymbol{\mathsf{E}}}_{\mathbf{\mathsf{T}}}^{\mathbf{\mathsf{miss}}} \) and \( \mathbf{1}\boldsymbol{\mathsf{b}}\mathbf{\mathsf{1}}\mathbf{\ell}+{\boldsymbol{E}}_{\mathbf{T}}^{\mathbf{miss}} \). We found that, if the lightest sbottom has mass around or below 1 TeV and has a significant branching ratio to decay to stop and \( W\left(\tilde{b}\to \tilde{t}W\right) \), a stop almost degenerate with neutralino can be excluded up to about 500-600 GeV at the 13 TeV LHC with 300 fb−1 data. The searches we propose are complementary to other SUSY searches at the LHC and could have the best sensitivity to the stop-bino coannihilation region. Since they involve final states which have already been used in LHC searches, a reinterpretation of the search results already has sensitivity. Further optimization could deliver the full potential of these channels.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    CMS collaboration, Search for direct top squark pair production in the single lepton final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-028 (2016).

  2. [2]

    CMS collaboration, Search for direct top squark pair production in the fully hadronic final state in proton-proton collisions at \( \sqrt{s}=13 \) TeV corresponding to an integrated luminosity of 12.9/fb, CMS-PAS-SUS-16-029 (2016).

  3. [3]

    CMS collaboration, Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-030 (2016).

  4. [4]

    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2016-050 (2016).

  5. [5]

    ATLAS collaboration, Search for the Supersymmetric Partner of the Top Quark in the Jets + Emiss Final State at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-077 (2016).

  6. [6]

    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [Erratum ibid. C 76 (2016) 153] [arXiv:1506.08616] [INSPIRE].

  7. [7]

    CMS collaboration, Search for direct pair production of scalar top quarks in the single- and dilepton channels in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2016) 027 [Erratum JHEP 09 (2016) 056] [arXiv:1602.03169] [INSPIRE].

  8. [8]

    CMS collaboration, Search for direct pair production of supersymmetric top quarks decaying to all-hadronic final states in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76 (2016) 460 [arXiv:1603.00765] [INSPIRE].

  9. [9]

    CMS collaboration, Search for direct top squark pair production in the single lepton final state at \( \sqrt{s}=13 \) TeV, CMS-PAS-SUS-16-002 (2016).

  10. [10]

    CMS collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state, in proceedings of the 51st Rencontres de Moriond on EW Interactions and Unified Theories, La Thuile, Italy, 12-19 March 2016 [arXiv:1605.05762] [INSPIRE].

  11. [11]

    ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, Phys. Rev. D 94 (2016) 052009 [arXiv:1606.03903] [INSPIRE].

  12. [12]

    M. Jezabek, Top quark physics, Nucl. Phys. Proc. Suppl. B 37 (1994) 197 [hep-ph/9406411] [INSPIRE].

  13. [13]

    A. Brandenburg, Z.G. Si and P. Uwer, QCD corrected spin analyzing power of jets in decays of polarized top quarks, Phys. Lett. B 539 (2002) 235 [hep-ph/0205023] [INSPIRE].

  14. [14]

    Z. Han, A. Katz, D. Krohn and M. Reece, (Light) Stop Signs, JHEP 08 (2012) 083 [arXiv:1205.5808] [INSPIRE].

  15. [15]

    CDF collaboration, T. Aaltonen et al., Measurement of \( t\overline{t} \) Spin Correlation in \( p\overline{p} \) Collisions Using the CDF II Detector at the Tevatron, Phys. Rev. D 83 (2011) 031104 [arXiv:1012.3093] [INSPIRE].

  16. [16]

    D0 collaboration, V.M. Abazov et al., Measurement of spin correlation in \( t\overline{t} \) production using dilepton final states, Phys. Lett. B 702 (2011) 16 [arXiv:1103.1871] [INSPIRE].

  17. [17]

    D0 collaboration, V.M. Abazov et al., Measurement of spin correlation in \( t\overline{t} \) production using a matrix element approach, Phys. Rev. Lett. 107 (2011) 032001 [arXiv:1104.5194] [INSPIRE].

  18. [18]

    D0 collaboration, V.M. Abazov et al., Measurement of the top quark pair production cross section in the lepton + jets channel in proton-antiproton collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 84 (2011) 012008 [arXiv:1101.0124] [INSPIRE].

  19. [19]

    ATLAS collaboration, Observation of spin correlation in \( t\overline{t} \) events from pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. Lett. 108 (2012) 212001 [arXiv:1203.4081] [INSPIRE].

  20. [20]

    ATLAS collaboration, Measurements of spin correlation in top-antitop quark events from proton-proton collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 90 (2014) 112016 [arXiv:1407.4314] [INSPIRE].

  21. [21]

    CMS collaboration, Measurements of \( t\overline{t} \) spin correlations and top-quark polarization using dilepton final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 112 (2014) 182001 [arXiv:1311.3924] [INSPIRE].

  22. [22]

    ATLAS collaboration, Measurement of Spin Correlation in Top-Antitop Quark Events and Search for Top Squark Pair Production in pp Collisions at \( \sqrt{s}=8 \) TeV Using the ATLAS Detector, Phys. Rev. Lett. 114 (2015) 142001 [arXiv:1412.4742] [INSPIRE].

  23. [23]

    A. Choudhury and A. Datta, New limits on top squark NLSP from LHC 4.7 fb −1 data, Mod. Phys. Lett. A 27 (2012) 1250188 [arXiv:1207.1846] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    G. Bélanger, D. Ghosh, R. Godbole, M. Guchait and D. Sengupta, Probing the flavor violating scalar top quark signal at the LHC, Phys. Rev. D 89 (2014) 015003 [arXiv:1308.6484] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    ATLAS collaboration, Search for pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 052008 [arXiv:1407.0608] [INSPIRE].

  26. [26]

    CMS collaboration, Search for top squark pair production in compressed-mass-spectrum scenarios in proton-proton collisions at \( \sqrt{s}=8 \) TeV using the α T variable, Phys. Lett. B 767 (2017) 403 [arXiv:1605.08993] [INSPIRE].

  27. [27]

    M. Carena, A. Freitas and C.E.M. Wagner, Light Stop Searches at the LHC in Events with One Hard Photon or Jet and Missing Energy, JHEP 10 (2008) 109 [arXiv:0808.2298] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    S. Bornhauser, M. Drees, S. Grab and J.S. Kim, Light Stop Searches at the LHC in Events with two b-Jets and Missing Energy, Phys. Rev. D 83 (2011) 035008 [arXiv:1011.5508] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    M.A. Ajaib, T. Li and Q. Shafi, Stop-Neutralino Coannihilation in the Light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    M. Drees, M. Hanussek and J.S. Kim, Light Stop Searches at the LHC with Monojet Events, Phys. Rev. D 86 (2012) 035024 [arXiv:1201.5714] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    H. Dreiner, M. Krämer and J. Tattersall, Exploring QCD uncertainties when setting limits on compressed supersymmetric spectra, Phys. Rev. D 87 (2013) 035006 [arXiv:1211.4981] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    K. Krizka, A. Kumar and D.E. Morrissey, Very Light Scalar Top Quarks at the LHC, Phys. Rev. D 87 (2013) 095016 [arXiv:1212.4856] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    A. Delgado, G.F. Giudice, G. Isidori, M. Pierini and A. Strumia, The light stop window, Eur. Phys. J. C 73 (2013) 2370 [arXiv:1212.6847] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    T. Cohen et al., A Comparison of Future Proton Colliders Using SUSY Simplified Models: A Snowmass Whitepaper, in proceedings of the Community Summer Study 2013: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July-6 August 2013 [arXiv:1310.0077] [INSPIRE].

  35. [35]

    M. Low and L.-T. Wang, Neutralino dark matter at 14 TeV and 100 TeV, JHEP 08 (2014) 161 [arXiv:1404.0682] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    G. Ferretti, R. Franceschini, C. Petersson and R. Torre, Spot the stop with a b-tag, Phys. Rev. Lett. 114 (2015) 201801 [arXiv:1502.01721] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    CMS collaboration, Searches for third-generation squark production in fully hadronic final states in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2015) 116 [arXiv:1503.08037] [INSPIRE].

  38. [38]

    K.-i. Hikasa, J. Li, L. Wu and J.M. Yang, Single top squark production as a probe of natural supersymmetry at the LHC, Phys. Rev. D 93 (2016) 035003 [arXiv:1505.06006] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    M. Czakon, A. Mitov, M. Papucci, J.T. Ruderman and A. Weiler, Closing the stop gap, Phys. Rev. Lett. 113 (2014) 201803 [arXiv:1407.1043] [INSPIRE].

    ADS  Article  Google Scholar 

  40. [40]

    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section using eμ events with b-tagged jets in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Eur. Phys. J. C 74 (2014) 3109 [arXiv:1406.5375] [INSPIRE].

  41. [41]

    K. Rolbiecki and J. Tattersall, Refining light stop exclusion limits with W + W cross sections, Phys. Lett. B 750 (2015) 247 [arXiv:1505.05523] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    B. Dutta et al., Probing compressed top squark scenarios at the LHC at 14 TeV, Phys. Rev. D 90 (2014) 095022 [arXiv:1312.1348] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    M. Drees and M.M. Nojiri, A new signal for scalar top bound state production, Phys. Rev. Lett. 72 (1994) 2324 [hep-ph/9310209] [INSPIRE].

  44. [44]

    M. Drees and M.M. Nojiri, Production and decay of scalar stoponium bound states, Phys. Rev. D 49 (1994) 4595 [hep-ph/9312213] [INSPIRE].

  45. [45]

    S.P. Martin, Diphoton decays of stoponium at the Large Hadron Collider, Phys. Rev. D 77 (2008) 075002 [arXiv:0801.0237] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    B. Batell and S. Jung, Probing Light Stops with Stoponium, JHEP 07 (2015) 061 [arXiv:1504.01740] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    R. Gröber, M.M. Mühlleitner, E. Popenda and A. Wlotzka, Light Stop Decays: Implications for LHC Searches, Eur. Phys. J. C 75 (2015) 420 [arXiv:1408.4662] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, A Toolkit of the Stop Search via the Chargino Decay, JHEP 08 (2013) 085 [arXiv:1304.3148] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    W.S. Cho et al., Improving the sensitivity of stop searches with on-shell constrained invariant mass variables, JHEP 05 (2015) 040 [arXiv:1411.0664] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    D.S.M. Alves, M.R. Buckley, P.J. Fox, J.D. Lykken and C.-T. Yu, Stops and : The shape of things to come, Phys. Rev. D 87 (2013) 035016 [arXiv:1205.5805] [INSPIRE].

  51. [51]

    K. Hagiwara and T. Yamada, Equal-velocity scenario for hiding dark matter at the LHC, Phys. Rev. D 91 (2015) 094007 [arXiv:1307.1553] [INSPIRE].

    ADS  Google Scholar 

  52. [52]

    H. An and L.-T. Wang, Opening up the compressed region of top squark searches at 13 TeV LHC, Phys. Rev. Lett. 115 (2015) 181602 [arXiv:1506.00653] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    S. Macaluso, M. Park, D. Shih and B. Tweedie, Revealing Compressed Stops Using High-Momentum Recoils, JHEP 03 (2016) 151 [arXiv:1506.07885] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    A. Kobakhidze, N. Liu, L. Wu, J.M. Yang and M. Zhang, Closing up a light stop window in natural SUSY at LHC, Phys. Lett. B 755 (2016) 76 [arXiv:1511.02371] [INSPIRE].

    ADS  Article  Google Scholar 

  55. [55]

    H.-C. Cheng, C. Gao, L. Li and N.A. Neill, Stop Search in the Compressed Region via Semileptonic Decays, JHEP 05 (2016) 036 [arXiv:1604.00007] [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    H.-C. Cheng, L. Li and Q. Qin, Second Stop and Sbottom Searches with a Stealth Stop, JHEP 11 (2016) 181 [arXiv:1607.06547] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    P. Jackson, C. Rogan and M. Santoni, Sparticles in motion: Analyzing compressed SUSY scenarios with a new method of event reconstruction, Phys. Rev. D 95 (2017) 035031 [arXiv:1607.08307] [INSPIRE].

    ADS  Google Scholar 

  58. [58]

    B. Kaufman, P. Nath, B.D. Nelson and A.B. Spisak, Light Stops and Observation of Supersymmetry at LHC RUN-II, Phys. Rev. D 92 (2015) 095021 [arXiv:1509.02530] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].

  60. [60]

    CMS collaboration, A search for new phenomena in pp collisions at \( \sqrt{s}=13 \) TeV in final states with missing transverse momentum and at least one jet using the α T variable, submitted to Eur. Phys. J. C (2016) [arXiv:1611.00338] [INSPIRE].

  61. [61]

    D. Gonçalves, K. Sakurai and M. Takeuchi, Mono-top Signature from Supersymmetric ttH Channel, Phys. Rev. D 94 (2016) 075009 [arXiv:1604.03938] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    D. Gonçalves, K. Sakurai and M. Takeuchi, Tagging a monotop signature in natural SUSY, Phys. Rev. D 95 (2017) 015030 [arXiv:1610.06179] [INSPIRE].

    ADS  Google Scholar 

  63. [63]

    A. Pierce and B. Shakya, Implications of a Stop Sector Signal at the LHC, arXiv:1611.00771 [INSPIRE].

  64. [64]

    J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].

  65. [65]

    A. Berlin, D.S. Robertson, M.P. Solon and K.M. Zurek, Bino variations: Effective field theory methods for dark matter direct detection, Phys. Rev. D 93 (2016) 095008 [arXiv:1511.05964] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun. 192 (2015) 322 [arXiv:1407.6129] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    ATLAS collaboration, Search for bottom squark pair production in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 76 (2016) 547 [arXiv:1606.08772] [INSPIRE].

  68. [68]

    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

  69. [69]

    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

  70. [70]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  72. [72]

    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  73. [73]

    ATLAS collaboration, Expected performance of the ATLAS b-tagging algorithms in Run-2, ATL-PHYS-PUB-2015-022 (2015).

  74. [74]

    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \( \sqrt{s}=13 \) , 14, 33 and 100 TeV, Eur. Phys. J. C 74 (2014) 3174 [arXiv:1407.5066] [INSPIRE].

    ADS  Article  Google Scholar 

  75. [75]

    S. Padhi, Susycrosssections13tevstopsbottom, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections13TeVstopsbottom.

  76. [76]

    M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    M.J. Costa, NNLO + NNLL top-quark-pair cross sections. ATLAS-CMS recommended predictions for top-quark-pair cross sections using the Top++v2.0 program (M. Czakon, A. Mitov, 2013), (2015) https://twiki.cern.ch/twiki/bin/view/LHCPhysics/TtbarNNLO.

  78. [78]

    O.M. Kind, NLO single-top channel cross sections. ATLAS-CMS recommended predictions for single-top cross sections using the Hathor v2.1 program, (2016) https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SingleTopRefXsec.

  79. [79]

    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    ATLAS collaboration, Measurement of the \( t\overline{t}Z \) and \( t\overline{t}W \) production cross sections in multilepton final states using 3.2 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J. C 77 (2017) 40 [arXiv:1609.01599] [INSPIRE].

  81. [81]

    C.G. Lester and D.J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B 463 (1999) 99 [hep-ph/9906349] [INSPIRE].

  82. [82]

    A. Barr, C. Lester and P. Stephens, A variable for measuring masses at hadron colliders when missing energy is expected; m T 2 : the truth behind the glamour, J. Phys. G 29 (2003) 2343 [hep-ph/0304226] [INSPIRE].

  83. [83]

    Y. Bai, H.-C. Cheng, J. Gallicchio and J. Gu, Stop the Top Background of the Stop Search, JHEP 07 (2012) 110 [arXiv:1203.4813] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    ATLAS collaboration, Search for top squark pair production in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS detector, JHEP 11 (2014) 118 [arXiv:1407.0583] [INSPIRE].

  85. [85]

    M.L. Graesser and J. Shelton, Hunting Mixed Top Squark Decays, Phys. Rev. Lett. 111 (2013) 121802 [arXiv:1212.4495] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

  87. [87]

    T. Han, S. Su, Y. Wu, B. Zhang and H. Zhang, Sbottom discovery via mixed decays at the LHC, Phys. Rev. D 92 (2015) 115009 [arXiv:1507.04006] [INSPIRE].

    ADS  Google Scholar 

  88. [88]

    M. Perelstein and C. Spethmann, A Collider signature of the supersymmetric golden region, JHEP 04 (2007) 070 [hep-ph/0702038] [INSPIRE].

  89. [89]

    D. Ghosh, Boosted dibosons from mixed heavy top squarks, Phys. Rev. D 88 (2013) 115013 [arXiv:1308.0320] [INSPIRE].

    ADS  Google Scholar 

  90. [90]

    CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiayin Gu.

Additional information

ArXiv ePrint: 1611.09868

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

An, H., Gu, J. & Wang, LT. Exploring the nearly degenerate stop region with sbottom decays. J. High Energ. Phys. 2017, 84 (2017). https://doi.org/10.1007/JHEP04(2017)084

Download citation

Keywords

  • Supersymmetry Phenomenology