Advertisement

Novel SM-like Higgs decay into displaced heavy neutrino pairs in U(1)′ models

  • Elena Accomando
  • Luigi Delle RoseEmail author
  • Stefano Moretti
  • Emmanuel Olaiya
  • Claire H. Shepherd-Themistocleous
Open Access
Regular Article - Theoretical Physics

Abstract

We examine the observability of heavy neutrino (ν h ) signatures of a U(1)′ enlarged Standard Model (SM) encompassing three heavy Majorana neutrinos alongside the known light neutrino states at the the Large Hadron Collider (LHC). We show that heavy neutrinos can be rather long-lived particles producing distinctive displaced vertices that can be accessed in the CERN LHC detectors. We concentrate here on the gluon fusion production mechanism ggH 1,2ν h ν h , where H 1 is the discovered SM-like Higgs and H 2 is a heavier state, yielding displaced leptons following ν h decays into weak gauge bosons. Using data collected by the end of the LHC Run 2, these signatures would prove to be accessible with negligibly small background.

Keywords

Beyond Standard Model Higgs Physics Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Langacker, Grand unified theories and proton decay, Phys. Rept. 72 (1981) 185 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.L. Hewett and T.G. Rizzo, Low-energy phenomenology of superstring inspired E 6 models, Phys. Rept. 183 (1989) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    A.E. Faraggi and D.V. Nanopoulos, A superstring Zat O(1 TeV)?, Mod. Phys. Lett. A 6 (1991) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    A.E. Faraggi and M. Guzzi, Extra Zs and Ws in heterotic-string derived models, Eur. Phys. J. C 75 (2015) 537 [arXiv:1507.07406] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    A.E. Faraggi and J. Rizos, The 750 GeV di-photon LHC excess and extra Zs in heterotic-string derived models, Eur. Phys. J. C 76 (2016) 170 [arXiv:1601.03604] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].
  7. [7]
    E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Zphysics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].ADSGoogle Scholar
  8. [8]
    S. Khalil and A. Masiero, Radiative B-L symmetry breaking in supersymmetric models, Phys. Lett. B 665 (2008) 374 [arXiv:0710.3525] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the Standard Model: Zand neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  10. [10]
    L. Basso, S. Moretti and G.M. Pruna, Constraining the g 1 coupling in the minimal B-L model, J. Phys. G 39 (2012) 025004 [arXiv:1009.4164] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    L. Basso, A. Belyaev, S. Moretti, G.M. Pruna and C.H. Shepherd-Themistocleous, Zdiscovery potential at the LHC in the minimal B-L extension of the Standard Model, Eur. Phys. J. C 71 (2011) 1613 [arXiv:1002.3586] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    L. Basso, S. Moretti and G.M. Pruna, Phenomenology of the minimal B-L extension of the Standard Model: the Higgs sector, Phys. Rev. D 83 (2011) 055014 [arXiv:1011.2612] [INSPIRE].ADSGoogle Scholar
  13. [13]
    L. Basso, S. Moretti and G.M. Pruna, A renormalisation group equation study of the scalar sector of the minimal B-L extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  14. [14]
    L. Basso, S. Moretti and G.M. Pruna, Theoretical constraints on the couplings of non-exotic minimal Zbosons, JHEP 08 (2011) 122 [arXiv:1106.4762] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    L. Basso, K. Mimasu and S. Moretti, Zsignals in polarised top-antitop final states, JHEP 09 (2012) 024 [arXiv:1203.2542] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Basso, K. Mimasu and S. Moretti, Non-exotic Z signals in ℓ + , \( b\overline{b} \) and \( t\overline{t} \) final states at the LHC, JHEP 11 (2012) 060 [arXiv:1208.0019] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Accomando, D. Becciolini, A. Belyaev, S. Moretti and C. Shepherd-Themistocleous, Zat the LHC: interference and finite width effects in Drell-Yan, JHEP 10 (2013) 153 [arXiv:1304.6700] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, Forward-backward asymmetry as a discovery tool for Zbosons at the LHC, JHEP 01 (2016) 127 [arXiv:1503.02672] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti and C. Shepherd-Themistocleous, A FB as a discovery tool for Zbosons at the LHC, Nuovo Cim. C 38 (2016) 153 [arXiv:1504.03168] [INSPIRE].ADSGoogle Scholar
  20. [20]
    N. Okada and S. Okada, Z BL portal dark matter and LHC Run-2 results, Phys. Rev. D 93 (2016) 075003 [arXiv:1601.07526] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the type I seesaw mechanism with displaced vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV seesaw models from LHC Higgs data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].ADSGoogle Scholar
  23. [23]
    C.G. Cely, A. Ibarra, E. Molinaro and S.T. Petcov, Higgs decays in the low scale type I see-saw model, Phys. Lett. B 718 (2013) 957 [arXiv:1208.3654] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    I.M. Shoemaker, K. Petraki and A. Kusenko, Collider signatures of sterile neutrinos in models with a gauge-singlet Higgs, JHEP 09 (2010) 060 [arXiv:1006.5458] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    S. Antusch, E. Cazzato and O. Fischer, Displaced vertex searches for sterile neutrinos at future lepton colliders, JHEP 12 (2016) 007 [arXiv:1604.02420] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Brooijmans et al., Les Houches 2011: physics at TeV colliders new physics working group report, in Proceedings, 7th Les Houches Workshop on Physics at TeV colliders, Les Houches France, 30 May–17 June 2011, pg. 221 [arXiv:1203.1488] [INSPIRE].
  27. [27]
    C. Corianò, L. Delle Rose and C. Marzo, Constraints on Abelian extensions of the Standard Model from two-loop vacuum stability and U(1)BL, JHEP 02 (2016) 135 [arXiv:1510.02379] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    E. Accomando, C. Corianò, L. Delle Rose, J. Fiaschi, C. Marzo and S. Moretti, Z, Higgses and heavy neutrinos in U(1)′ models: from the LHC to the GUT scale, JHEP 07 (2016) 086 [arXiv:1605.02910] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P. Langacker, The physics of heavy Zgauge bosons, Rev. Mod. Phys. 81 (2009) 1199 [arXiv:0801.1345] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    J. Erler, P. Langacker, S. Munir and E. Rojas, Improved constraints on Zbosons from electroweak precision data, JHEP 08 (2009) 017 [arXiv:0906.2435] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The minimal set of electroweak precision parameters, Phys. Rev. D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
  32. [32]
    E. Salvioni, G. Villadoro and F. Zwirner, Minimal Zmodels: present bounds and early LHC reach, JHEP 11 (2009) 068 [arXiv:0909.1320] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    LHC Higgs Cross section Working Group, SM Higgs production cross sections at \( \sqrt{s}=13 \) TeV webpage, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageAt13TeV.
  34. [34]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  35. [35]
    E. Accomando, D. Becciolini, S. De Curtis, D. Dominici, L. Fedeli and C. Shepherd-Themistocleous, Interference effects in heavy W-boson searches at the LHC, Phys. Rev. D 85 (2012) 115017 [arXiv:1110.0713] [INSPIRE].ADSGoogle Scholar
  36. [36]
    E. Accomando et al., Wand Zsearches at the LHC, PoS(DIS 2013)125 [INSPIRE].
  37. [37]
    E. Accomando, K. Mimasu and S. Moretti, Uncovering quasi-degenerate Kaluza-Klein electro-weak gauge bosons with top asymmetries at the LHC, JHEP 07 (2013) 154 [arXiv:1304.4494] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Accomando, Bounds on Kaluza-Klein states from EWPT and direct searches at the LHC, Mod. Phys. Lett. A 30 (2015) 1540010 [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    E. Accomando, D. Barducci, S. De Curtis, J. Fiaschi, S. Moretti and C.H. Shepherd-Themistocleous, Drell-Yan production of multi Z-bosons at the LHC within non-universal ED and 4D composite Higgs models, JHEP 07 (2016) 068 [arXiv:1602.05438] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    CMS collaboration, Search for narrow resonances in dilepton mass spectra in proton-proton collisions at \( \sqrt{s}=13 \) TeV and combination with 8 TeV data, Phys. Lett. B 768 (2017) 57 [arXiv:1609.05391] [INSPIRE].
  41. [41]
    A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dirac-fermionic dark matter in U(1)X models, JHEP 10 (2015) 076 [arXiv:1506.06767] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Klasen, F. Lyonnet and F.S. Queiroz, NLO+NLL collider bounds, Dirac fermion and scalar dark matter in the B-L model, arXiv:1607.06468 [INSPIRE].
  43. [43]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  44. [44]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].
  45. [45]
    P. Bechtle et al., Recent Developments in HiggsBounds and a preview of HiggsSignals, PoS(CHARGED 2012)024 [arXiv:1301.2345] [INSPIRE].
  46. [46]
    P. Bechtle et al., HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2693 [arXiv:1311.0055] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak and G. Weiglein, Applying exclusion likelihoods from LHC searches to extended Higgs sectors, Eur. Phys. J. C 75 (2015) 421 [arXiv:1507.06706] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    P. Bechtle, S. Heinemeyer, O. St al, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].
  49. [49]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  50. [50]
    G. Brooijmans et al., High energy physics model database: towards decoding of the underlying theory, within Les Houches 2011: physics at TeV colliders new physics working group report, arXiv:1203.1488 [INSPIRE].
  51. [51]
    CMS collaboration, The performance of the CMS muon detector in proton-proton collisions at \( \sqrt{s}=7 \) TeV at the LHC, 2013 JINST 8 P11002 [arXiv:1306.6905] [INSPIRE].
  52. [52]
    A. Belyaev, S. Moretti, K. Nickel, M.C. Thomas and I. Tomalin, Hunting for neutral, long-lived exotica at the LHC using a missing transverse energy signature, JHEP 03 (2016) 018 [arXiv:1512.02229] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    CMS collaboration, Search for long-lived particles that decay into final states containing two muons, reconstructed using only the CMS muon chambers, CMS-PAS-EXO-14-012, CERN, Geneva Switzerland, (2014).
  54. [54]
    CMS collaboration, Search for long-lived particles that decay into final states containing two electrons or two muons in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052012 [arXiv:1411.6977] [INSPIRE].
  55. [55]
    CMS collaboration, Search for displaced supersymmetry in events with an electron and a muon with large impact parameters, Phys. Rev. Lett. 114 (2015) 061801 [arXiv:1409.4789] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Elena Accomando
    • 1
  • Luigi Delle Rose
    • 1
    • 2
    Email author
  • Stefano Moretti
    • 1
    • 2
  • Emmanuel Olaiya
    • 2
  • Claire H. Shepherd-Themistocleous
    • 2
  1. 1.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  2. 2.Particle Physics DepartmentRutherford Appleton LaboratoryDidcotU.K.

Personalised recommendations