Advertisement

Patterns of flavour violation in models with vector-like quarks

  • Christoph BobethEmail author
  • Andrzej J. Buras
  • Alejandro Celis
  • Martin Jung
Open Access
Regular Article - Theoretical Physics

Abstract

We study the patterns of flavour violation in renormalisable extensions of the Standard Model (SM) that contain vector-like quarks (VLQs) in a single complex representation of either the SM gauge group GSM or G SM ≡ GSM ⊗ U(1)L μ  − L τ . We first decouple VLQs in the M = (1 − 10) TeV range and then at the electroweak scale also Z, Z gauge bosons and additional scalars to study the phenomenology. The results depend on the relative size of Z- and Z -induced flavour-changing neutral currents, as well as the size of |ΔF | = 2 contributions including the effects of renormalisation group Yukawa evolution from M to the electroweak scale that turn out to be very important for models with right-handed currents through the generation of left-right operators. In addition to rare decays like \( P\to \ell \overline{\ell},P\to {P}^{\prime}\ell \overline{\ell},P\to {P}^{\prime}\nu \overline{\nu} \) with P = K, B s , B d and |ΔF | = 2 observables we analyze the ratio ε which appears in the SM to be significantly below the data. We study patterns and correlations between these observables which taken together should in the future allow for differentiating between VLQ models. In particular the patterns in models with left-handed and right-handed currents are markedly different from each other. Among the highlights are large Z-mediated new physics effects in Kaon observables in some of the models and significant effects in B s,d -observables. ε can easily be made consistent with the data, implying then uniquely the suppression of \( {K}_L\to {\pi}^0\nu\ \overline{\nu} \). Significant enhancements of \( Br\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right) \) are still possible. We point out that the combination of NP effects to |ΔF | = 2 and |ΔF | = 1 observables in a given meson system generally allows to determine the masses of VLQs in a given representation independently of the size of VLQ couplings.

Keywords

Beyond Standard Model CP violation Heavy Quark Physics Kaon Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Y. Nir and D.J. Silverman, Z mediated flavor changing neutral currents and their implications for CP asymmetries in B 0 decays, Phys. Rev. D 42 (1990) 1477 [INSPIRE].ADSGoogle Scholar
  2. [2]
    G.C. Branco, T. Morozumi, P.A. Parada and M.N. Rebelo, CP asymmetries in B 0 decays in the presence of flavor changing neutral currents, Phys. Rev. D 48 (1993) 1167 [INSPIRE].ADSGoogle Scholar
  3. [3]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].
  4. [4]
    G. Barenboim, F.J. Botella and O. Vives, Constraining models with vector-like fermions from FCNC in K and B physics, Nucl. Phys. B 613 (2001) 285 [hep-ph/0105306] [INSPIRE].
  5. [5]
    A.J. Buras, B. Duling and S. Gori, The impact of Kaluza-Klein fermions on Standard Model fermion couplings in a RS model with custodial protection, JHEP 09 (2009) 076 [arXiv:0905.2318] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F.J. Botella, G.C. Branco and M. Nebot, The hunt for new physics in the flavour sector with up vector-like quarks, JHEP 12 (2012) 040 [arXiv:1207.4440] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Fajfer, A. Greljo, J.F. Kamenik and I. Mustac, Light Higgs and vector-like quarks without prejudice, JHEP 07 (2013) 155 [arXiv:1304.4219] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A.J. Buras, J. Girrbach and R. Ziegler, Particle-antiparticle mixing, CP-violation and rare K and B decays in a minimal theory of fermion masses, JHEP 04 (2013) 168 [arXiv:1301.5498] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in L μ -L τ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  10. [10]
    A.K. Alok, S. Banerjee, D. Kumar, S.U. Sankar and D. London, New-physics signals of a model with a vector-singlet up-type quark, Phys. Rev. D 92 (2015) 013002 [arXiv:1504.00517] [INSPIRE].ADSGoogle Scholar
  11. [11]
    K. Ishiwata, Z. Ligeti and M.B. Wise, New vector-like fermions and flavor physics, JHEP 10 (2015)027 [arXiv:1506.03484] [INSPIRE].
  12. [12]
    P. Arnan, L. Hofer, F. Mescia and A. Crivellin, Loop effects of heavy new scalars and fermions in b + μ , arXiv:1608.07832 [INSPIRE].
  13. [13]
    X.G. He, G.C. Joshi, H. Lew and R.R. Volkas, New Z phenomenology, Phys. Rev. D 43 (1991) 22 [INSPIRE].
  14. [14]
    X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].ADSGoogle Scholar
  15. [15]
    W. Altmannshofer and I. Yavin, Predictions for lepton flavor universality violation in rare B decays in models with gauged L μ -L τ , Phys. Rev. D 92 (2015) 075022 [arXiv:1508.07009] [INSPIRE].ADSGoogle Scholar
  16. [16]
    A.J. Buras and J. Girrbach, Left-handed Z and Z FCNC quark couplings facing new b + μ data, JHEP 12(2013) 009 [arXiv:1309.2466] [INSPIRE].
  17. [17]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in electroweak precision data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].ADSGoogle Scholar
  18. [18]
    C. Bobeth, A.J. Buras, A. Celis and M. Jung, Yukawa enhancement of Z-mediated new physics in ΔS = 2 and ΔB = 2 processes, arXiv:1703.04753 [INSPIRE].
  19. [19]
    RBC-UKQCD collaboration, Z. Bai et al., Standard Model prediction for direct CP-violation in Kππ decay, Phys. Rev. Lett. 115 (2015) 212001 [arXiv:1505.07863] [INSPIRE].
  20. [20]
    A.J. Buras, M. Gorbahn, S. Jäger and M. Jamin, Improved anatomy of ϵ /ϵ in the Standard Model, JHEP 11 (2015) 202 [arXiv:1507.06345] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A.J. Buras and J.-M. Gérard, Upper bounds on ϵ /ϵ parameters B 6(61/2) and B 8(3/2) from large-N QCD and other news, JHEP 12 (2015) 008 [arXiv:1507.06326] [INSPIRE].ADSGoogle Scholar
  22. [22]
    T. Kitahara, U. Nierste and P. Tremper, Singularity-free next-to-leading order ΔS = 1 renormalization group evolution and ϵ K/ϵ K in the Standard Model and beyond, JHEP 12 (2016) 078 [arXiv:1607.06727] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μ -L τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group and L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  25. [25]
    F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Collider limits on leptophilic interactions, JHEP 03 (2015) 059 [arXiv:1411.7394] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators I: formalism and λ dependence, JHEP 10 (2013) 087 [arXiv:1308.2627] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators II: Yukawa dependence, JHEP 01 (2014) 035 [arXiv:1310.4838] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the Standard Model dimension six operators III: gauge coupling dependence and phenomenology, JHEP 04 (2014) 159 [arXiv:1312.2014] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the Standard Model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
  31. [31]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    J. Aebischer, A. Crivellin, M. Fael and C. Greub, Matching of gauge invariant dimension-six operators for bs and bc transitions, JHEP 05 (2016) 037 [arXiv:1512.02830] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Ciuchini, E. Franco, V. Lubicz, G. Martinelli, I. Scimemi and L. Silvestrini, Next-to-leading order QCD corrections to ΔF = 2 effective Hamiltonians, Nucl. Phys. B 523 (1998)501 [hep-ph/9711402] [INSPIRE].
  34. [34]
    A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing four quark operators within and beyond the Standard Model, Nucl. Phys. B 586 (2000)397 [hep-ph/0005183] [INSPIRE].
  35. [35]
    A.J. Buras, F. De Fazio and J. Girrbach, The anatomy of Z and Z with flavour changing neutral currents in the flavour precision era, JHEP 02 (2013) 116 [arXiv:1211.1896] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  36. [36]
    A.J. Buras, Minimal flavour violation and beyond: towards a flavour code for short distance dynamics, Acta Phys. Polon. B 41 (2010) 2487 [arXiv:1012.1447] [INSPIRE].Google Scholar
  37. [37]
    A.J. Buras, F. De Fazio, J. Girrbach and M.V. Carlucci, The anatomy of quark flavour observables in 331 models in the flavour precision era, JHEP 02 (2013) 023 [arXiv:1211.1237] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A.J. Buras and J. Girrbach, Complete NLO QCD corrections for tree level ΔF = 2 FCNC processes, JHEP 03 (2012) 052 [arXiv:1201.1302] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  39. [39]
    C. Bobeth, M. Gorbahn and E. Stamou, Electroweak corrections to B s,d + , Phys. Rev. D 89 (2014) 034023 [arXiv:1311.1348] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A.J. Buras, New physics patterns in ϵ /ϵ and ϵ K with implications for rare kaon decays and ΔM K, JHEP 04 (2016) 071 [arXiv:1601.00005] [INSPIRE].ADSGoogle Scholar
  41. [41]
    T. Blum et al., Kππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].ADSGoogle Scholar
  42. [42]
    NA48 collaboration, J.R. Batley et al., A precision measurement of direct CP-violation in the decay of neutral kaons into two pions, Phys. Lett. B 544 (2002) 97 [hep-ex/0208009] [INSPIRE].
  43. [43]
    KTeV collaboration, A. Alavi-Harati et al., Measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev. D 67 (2003) 012005 [Erratum ibid. D 70 (2004) 079904] [hep-ex/0208007] [INSPIRE].
  44. [44]
    KTeV collaboration, E. Abouzaid et al., Precise measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev. D 83 (2011) 092001 [arXiv:1011.0127] [INSPIRE].
  45. [45]
    A.J. Buras and J.-M. Gérard, Final state interactions in Kππ decays: ΔI = 1/2 rule vs. ϵ′/ϵ, Eur. Phys. J. C 77 (2017) 10 [arXiv:1603.05686] [INSPIRE].
  46. [46]
    V. Antonelli, S. Bertolini, M. Fabbrichesi and E.I. Lashin, The ΔI = 1/2 selection rule, Nucl. Phys. B 469 (1996) 181 [hep-ph/9511341] [INSPIRE].
  47. [47]
    S. Bertolini, J.O. Eeg and M. Fabbrichesi, A new estimate of ϵ , Nucl. Phys. B 476 (1996) 225 [hep-ph/9512356] [INSPIRE].
  48. [48]
    J.M. Frere, J. Galand, A. Le Yaouanc, L. Oliver, O. Pene and J.C. Raynal, \( {K}^0-{\overline{K}}^0 \) in the SU(2)L × SU(2)R × U(1) model of CP-violation, Phys. Rev. D 46 (1992) 337 [INSPIRE].ADSGoogle Scholar
  49. [49]
    E. Pallante and A. Pich, Strong enhancement of ϵ /ϵ through final state interactions, Phys. Rev. Lett. 84 (2000) 2568 [hep-ph/9911233] [INSPIRE].
  50. [50]
    E. Pallante and A. Pich, Final state interactions in kaon decays, Nucl. Phys. B 592 (2001) 294 [hep-ph/0007208] [INSPIRE].
  51. [51]
    M. Buchler, G. Colangelo, J. Kambor and F. Orellana, A note on the dispersive treatment of Kππ with the kaon off-shell, Phys. Lett. B 521(2001)29 [hep-ph/0102289] [INSPIRE].
  52. [52]
    M. Buchler, G. Colangelo, J. Kambor and F. Orellana, Dispersion relations and soft pion theorems for Kππ, Phys. Lett. B 521 (2001) 22 [hep-ph/0102287] [INSPIRE].
  53. [53]
    E. Pallante, A. Pich and I. Scimemi, The Standard Model prediction for ϵ , Nucl. Phys. B 617 (2001) 441 [hep-ph/0105011] [INSPIRE].
  54. [54]
    A.J. Buras, D. Buttazzo and R. Knegjens, \( K\to\ \pi \nu \overline{\nu} \) and ϵ /ϵ in simplified new physics models, JHEP 11 (2015) 166 [arXiv:1507.08672] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    M. Blanke, A.J. Buras and S. Recksiegel, Quark flavour observables in the littlest Higgs model with T -parity after LHC run 1, Eur. Phys. J. C 76 (2016) 182 [arXiv:1507.06316] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    A.J. Buras and F. De Fazio, ϵ /ϵ in 331 models, JHEP 03 (2016) 010 [arXiv:1512.02869] [INSPIRE].
  57. [57]
    A.J. Buras and F. De Fazio, 331 models facing the tensions in ΔF = 2 processes with the impact on ϵ /ϵ, B sμ + μ and BK μ + μ , JHEP 08 (2016) 115 [arXiv:1604.02344] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M. Tanimoto and K. Yamamoto, Probing SUSY with 10 TeV stop mass in rare decays and CP-violation of kaon, Prog. Theor. Exp. Phys. 2016 (2016) 123B02 [arXiv:1603.07960] [INSPIRE].
  59. [59]
    T. Kitahara, U. Nierste and P. Tremper, Supersymmetric explanation of CP-violation in Kππ decays, Phys. Rev. Lett. 117(2016) 091802 [arXiv:1604.07400] [INSPIRE].
  60. [60]
    M. Endo, S. Mishima, D. Ueda and K. Yamamoto, Chargino contributions in light of recent ϵ′/ϵ, Phys. Lett. B 762 (2016) 493 [arXiv:1608.01444] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Fermilab Lattice and MILC collaborations, A. Bazavov et al., B (s)0 -mixing matrix elements from lattice QCD for the Standard Model and beyond, Phys. Rev. D 93 (2016) 113016 [arXiv:1602.03560] [INSPIRE].
  62. [62]
    M. Blanke and A.J. Buras, Universal unitarity triangle 2016 and the tension between ΔM s,d and ϵ K in CMFV models, Eur. Phys. J. C 76 (2016) 197 [arXiv:1602.04020] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    M. Endo, T. Kitahara, S. Mishima and K. Yamamoto, Revisiting kaon physics in general Z scenario, arXiv:1612.08839 [INSPIRE].
  64. [64]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.J. Buras, F. De Fazio and J. Girrbach, 331 models facing new b + μ data, JHEP 02 (2014) 112 [arXiv:1311.6729] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A. Efrati, A. Falkowski and Y. Soreq, Electroweak constraints on flavorful effective theories, JHEP 07 (2015) 018 [arXiv:1503.07872] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    Z. Bai, N.H. Christ, T. Izubuchi, C.T. Sachrajda, A. Soni and J. Yu, K L -K S mass difference from lattice QCD, Phys. Rev. Lett. 113 (2014) 112003 [arXiv:1406.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    W. Altmannshofer and D.M. Straub, New physics in bs transitions after LHC run 1, Eur. Phys. J. C 75 (2015) 382 [arXiv:1411.3161] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    W. Altmannshofer and D.M. Straub, Implications of bs measurements, arXiv:1503.06199 [INSPIRE].
  70. [70]
    S. Descotes-Genon, L. Hofer, J. Matias and J. Virto, Global analysis of bsℓℓ anomalies, JHEP 06 (2016) 092 [arXiv:1510.04239] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    T. Hurth, F. Mahmoudi and S. Neshatpour, On the anomalies in the latest LHCb data, Nucl. Phys. B 909 (2016) 737 [arXiv:1603.00865] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  73. [73]
    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].
  74. [74]
    G. Isidori and R. Unterdorfer, On the short distance constraints from K L,Sμ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].
  75. [75]
    Heavy Flavor Averaging Group (HFAG) collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE].
  76. [76]
    LHCb collaboration, First measurement of the differential branching fraction and CP asymmetry of the B ±π ± μ + μ decay, JHEP 10 (2015) 034 [arXiv:1509.00414] [INSPIRE].
  77. [77]
    LHCb and CMS collaborations, Observation of the rare B s0 → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].
  78. [78]
    LHCb collaboration, Differential branching fractions and isospin asymmetries of BK (∗) μ + μ decays, JHEP 06 (2014) 133 [arXiv:1403.8044] [INSPIRE].
  79. [79]
    M. Jung, Determining weak phases from BJ/ψP decays, Phys. Rev. D 86 (2012) 053008 [arXiv:1206.2050] [INSPIRE].ADSGoogle Scholar
  80. [80]
    K. De Bruyn and R. Fleischer, A roadmap to control penguin effects in B d0 → J/ψK S0 and B s0 → J/ψϕ, JHEP 03 (2015) 145 [arXiv:1412.6834] [INSPIRE].CrossRefGoogle Scholar
  81. [81]
    P. Frings, U. Nierste and M. Wiebusch, Penguin contributions to CP phases in B d,s decays to charmonium, Phys. Rev. Lett. 115 (2015) 061802 [arXiv:1503.00859] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    F. Newson et al., Prospects for \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) at CERN in NA62, arXiv:1411.0109 [INSPIRE].
  83. [83]
    A. Ceccucci, Direct CP-violation and rare K decays perspectives, Acta Phys. Polon. B 47 (2016) 261 [INSPIRE].CrossRefGoogle Scholar
  84. [84]
    E391a collaboration, J.K. Ahn et al., Experimental study of the decay \( {K}_L^0\to {\pi}^0\nu \overline{\nu} \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].
  85. [85]
    LHCb collaboration, Measurement of the B s0 → μ + μ branching fraction and search for B 0μ + μ decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805 [arXiv:1307.5024] [INSPIRE].
  86. [86]
    LHCb collaboration, Angular analysis of the B 0K ∗0 μ + μ decay using 3 fb −1 of integrated luminosity, JHEP 02 (2016) 104 [arXiv:1512.04442] [INSPIRE].
  87. [87]
    BaBar collaboration, J.P. Lees et al., Search for \( B\to {K^{\Big(}}^{\ast \Big)}\nu \overline{\nu} \) and invisible quarkonium decays, Phys. Rev. D 87 (2013) 112005 [arXiv:1303.7465] [INSPIRE].
  88. [88]
    Belle collaboration, O. Lutz et al., Search for \( B\to {h^{\Big(}}^{\ast \Big)}\nu \overline{\nu} \) with the full Belle ϒ (4S) data sample, Phys. Rev. D 87 (2013) 111103 [arXiv:1303.3719] [INSPIRE].
  89. [89]
    C. Bobeth, G. Hiller and G. Piranishvili, CP asymmetries in \( \overline{B}\to {\overline{K}}^{\ast}\left(\to \overline{K}\pi \right)\overline{\ell}\ell \) and untagged \( {\overline{B}}_s,\ {B}_s\to \phi \left(\to {K}^{+}{K}^{-}\right)\overline{\ell}\ell \) decays at NLO, JHEP 07 (2008) 106 [arXiv:0805.2525] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    C. Bobeth, G. Hiller and D. van Dyk, General analysis of \( \overline{B}\to {{\overline{K}}^{\Big(}}^{\ast \Big)}{\ell}^{+}{\ell}^{-} \) decays at low recoil, Phys. Rev. D 87 (2013) 034016 [arXiv:1212.2321] [INSPIRE].ADSGoogle Scholar
  91. [91]
    W. Altmannshofer, A.J. Buras, D.M. Straub and M. Wick, New strategies for new physics search in \( B\to {K}^{\ast}\nu \overline{\nu},\ B\to K\nu \overline{\nu} \) and \( B\to {X}_s\nu \overline{\nu} \) decays, JHEP 04 (2009) 022 [arXiv:0902.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\to {K^{\Big(}}^{\ast \Big)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  93. [93]
    T. Aushev et al., Physics at super B factory, arXiv:1002.5012 [INSPIRE].
  94. [94]
    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
  95. [95]
    L. Basso, S. Moretti and G.M. Pruna, A renormalisation group equation study of the scalar sector of the minimal B-L extension of the Standard Model, Phys. Rev. D 82 (2010) 055018 [arXiv:1004.3039] [INSPIRE].ADSGoogle Scholar
  96. [96]
    K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].
  97. [97]
    A.J. Buras, S. Jager and J. Urban, Master formulae for ΔF = 2 NLO QCD factors in the Standard Model and beyond, Nucl. Phys. B 605 (2001) 600 [hep-ph/0102316] [INSPIRE].
  98. [98]
    M. Gorbahn, S. Jager, U. Nierste and S. Trine, The supersymmetric Higgs sector and \( B-\overline{B} \) mixing for large tan β, Phys. Rev. D 84 (2011) 034030 [arXiv:0901.2065] [INSPIRE].ADSGoogle Scholar
  99. [99]
    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
  100. [100]
    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, hep-ph/9806471 [INSPIRE].
  101. [101]
    T. Inami and C.S. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \( {K}_L\to \mu \overline{\mu},\ {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}^0\to {\overline{K}}^0 \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].
  102. [102]
    G. Buchalla, A.J. Buras and M.K. Harlander, Penguin box expansion: flavor changing neutral current processes and a heavy top quark, Nucl. Phys. B 349 (1991) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  103. [103]
    G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B 400 (1993) 225 [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].
  105. [105]
    G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu},\ B\to X\nu \overline{\nu} \) and B + : an update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].
  106. [106]
    J. Brod, M. Gorbahn and E. Stamou, Two-loop electroweak corrections for the \( K\to \pi \nu \overline{\nu} \) decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].ADSGoogle Scholar
  107. [107]
    A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives, JHEP 11 (2015) 033 [arXiv:1503.02693] [INSPIRE].ADSCrossRefGoogle Scholar
  108. [108]
    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) at next-to-next-to-leading order, JHEP 11 (2006) 002[Erratum ibid. 11(2012) 167] [hep-ph/0603079] [INSPIRE].
  109. [109]
    G. Isidori, F. Mescia and C. Smith, Light-quark loops in \( K\to \pi \nu \overline{\nu} \), Nucl. Phys. B 718 (2005) 319 [hep-ph/0503107] [INSPIRE].
  110. [110]
    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from K 3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].ADSGoogle Scholar
  111. [111]
    C. Bobeth, G. Hiller and G. Piranishvili, Angular distributions of \( \overline{B}\to \overline{K}\ell +\ell - \) decays, JHEP 12 (2007) 040 [arXiv:0709.4174] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    T. Hermann, M. Misiak and M. Steinhauser, Three-loop QCD corrections to B sμ + μ , JHEP 12 (2013) 097 [arXiv:1311.1347] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    B. Grinstein and D. Pirjol, Exclusive rare BK + decays at low recoil: controlling the long-distance effects, Phys. Rev. D 70 (2004) 114005 [hep-ph/0404250] [INSPIRE].
  114. [114]
    M. Beylich, G. Buchalla and T. Feldmann, Theory of BK (∗) + decays at high q 2 : OPE and quark-hadron duality, Eur. Phys. J. C 71 (2011) 1635 [arXiv:1101.5118] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
    C. Bobeth, G. Hiller, D. van Dyk and C. Wacker, The decay BKℓ + at low hadronic recoil and model-independent ΔB = 1 constraints, JHEP 01 (2012) 107 [arXiv:1111.2558] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  116. [116]
    D. Seidel, Analytic two loop virtual corrections to bdℓ + , Phys. Rev. D 70 (2004) 094038 [hep-ph/0403185] [INSPIRE].
  117. [117]
    C. Greub, V. Pilipp and C. Schupbach, Analytic calculation of two-loop QCD corrections to bsℓ + in the high q 2 region, JHEP 12(2008)040 [arXiv:0810.4077] [INSPIRE].
  118. [118]
    Fermilab Lattice and MILC collaborations, J.A. Bailey et al., |V ub| from Bπℓν decays and (2 + 1)-flavor lattice QCD, Phys. Rev. D 92 (2015) 014024 [arXiv:1503.07839] [INSPIRE].
  119. [119]
    Fermilab Lattice and MILC collaborations, J.A. Bailey et al., Bπℓℓ form factors for new-physics searches from lattice QCD, Phys. Rev. Lett. 115 (2015) 152002 [arXiv:1507.01618] [INSPIRE].
  120. [120]
    J.A. Bailey et al., BKℓ + decay form factors from three-flavor lattice QCD, Phys. Rev. D 93 (2016) 025026 [arXiv:1509.06235] [INSPIRE].ADSGoogle Scholar
  121. [121]
    D. Du et al., Phenomenology of semileptonic B-meson decays with form factors from lattice QCD, Phys. Rev. D 93 (2016) 034005 [arXiv:1510.02349] [INSPIRE].ADSGoogle Scholar
  122. [122]
    C. Bobeth, G. Hiller and D. van Dyk, The benefits of \( \overline{B}\to {\overline{K}}^{\ast }{\ell}^{+}{\ell}^{-} \) decays at low recoil, JHEP 07 (2010) 098 [arXiv:1006.5013] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  123. [123]
    A. Bharucha, D.M. Straub and R. Zwicky, BV ℓ + in the Standard Model from light-cone sum rules, JHEP 08 (2016) 098 [arXiv:1503.05534] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Lattice QCD calculation of form factors describing the rare decays BK + and B sϕℓ + , Phys. Rev. D 89 (2014) 094501 [arXiv:1310.3722] [INSPIRE].ADSGoogle Scholar
  125. [125]
    R.R. Horgan, Z. Liu, S. Meinel and M. Wingate, Rare B decays using lattice QCD form factors, PoS (LATTICE2014) 372 [arXiv:1501.00367] [INSPIRE].
  126. [126]
    G. D’Ambrosio and J. Portoles, Vector meson exchange contributions to Kπγγ and K Lγℓ + , Nucl. Phys. B 492 (1997) 417 [hep-ph/9610244] [INSPIRE].
  127. [127]
    D. Gomez Dumm and A. Pich, Long distance contributions to the K Lμ + μ decay width, Phys. Rev. Lett. 80 (1998) 4633 [hep-ph/9801298] [INSPIRE].
  128. [128]
    J.-M. Gérard, C. Smith and S. Trine, Radiative kaon decays and the penguin contribution to the ΔI = 1/2 rule, Nucl. Phys. B 730 (2005) 1 [hep-ph/0508189] [INSPIRE].
  129. [129]
    A.J. Buras, M. Jamin and M.E. Lautenbacher, The anatomy of ϵ /ϵ beyond leading logarithms with improved hadronic matrix elements, Nucl. Phys. B 408 (1993) 209 [hep-ph/9303284] [INSPIRE].
  130. [130]
    A.L. Kagan, Right-handed currents, CP-violation and BV V , hep-ph/0407076 [INSPIRE].
  131. [131]
    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].ADSCrossRefGoogle Scholar
  132. [132]
    HPQCD collaboration, I. Allison et al., High-precision charm-quark mass from current-current correlators in lattice and continuum QCD, Phys. Rev. D 78 (2008) 054513 [arXiv:0805.2999] [INSPIRE].
  133. [133]
    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].ADSGoogle Scholar
  134. [134]
    A.J. Buras, D. Guadagnoli and G. Isidori, On ϵK beyond lowest order in the operator product expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    A.J. Buras, J.-M. Gérard and W.A. Bardeen, Large-N approach to kaon decays and mixing 28 years later: ΔI = 1/2 rule, \( {\overset{\wedge }{B}}_K \) and ΔM K , Eur. Phys. J. C 74 (2014) 2871 [arXiv:1401.1385] [INSPIRE].
  136. [136]
    A.J. Buras, M. Jamin and P.H. Weisz, Leading and next-to-leading QCD corrections to ϵ parameter and \( {B}^0-{\overline{B}}^0 \) mixing in the presence of a heavy top quark, Nucl. Phys. B 347 (1990)491 [INSPIRE].
  137. [137]
    J. Brod and M. Gorbahn, ϵK at next-to-next-to-leading order: the charm-top-quark contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].ADSGoogle Scholar
  138. [138]
    J. Brod and M. Gorbahn, Next-to-next-to-leading-order charm-quark contribution to the CP-violation parameter ϵ K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].ADSCrossRefGoogle Scholar
  139. [139]
    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B}^0-{\overline{B}}^0 \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].
  140. [140]
    RBC-UKQCD collaboration, N. Garron, R.J. Hudspith and A.T. Lytle, Neutral kaon mixing beyond the Standard Model with n f = 2 + 1 chiral fermions part 1: bare matrix elements and physical results, JHEP 11 (2016) 001 [arXiv:1609.03334] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Christoph Bobeth
    • 1
    • 2
    • 4
    Email author
  • Andrzej J. Buras
    • 1
    • 2
  • Alejandro Celis
    • 3
  • Martin Jung
    • 1
    • 4
  1. 1.TUM Institute for Advanced StudyGarchingGermany
  2. 2.Physik DepartmentTU MünchenGarchingGermany
  3. 3.Ludwig-Maximilians-Universität München, Fakultät für Physik, Arnold Sommerfeld Center for Theoretical PhysicsMünchenGermany
  4. 4.Excellence Cluster Universe, Technische Universität MünchenGarchingGermany

Personalised recommendations