The complete NLO corrections to dijet hadroproduction

  • R. Frederix
  • S. Frixione
  • V. Hirschi
  • D. Pagani
  • H.-S. Shao
  • M. Zaro
Open Access
Regular Article - Theoretical Physics

Abstract

We study the production of jets in hadronic collisions, by computing all contributions proportional to αSnαm, with n + m = 2 and n + m = 3. These correspond to leading and next-to-leading order results, respectively, for single-inclusive and dijet observables in a perturbative expansion that includes both QCD and electroweak effects. We discuss issues relevant to the definition of hadronic jets in the context of electroweak corrections, and present sample phenomenological predictions for the 13-TeV LHC. We find that both the leading and next-to-leading order contributions largely respect the relative hierarchy established by the respective coupling-constant combinations.

Keywords

NLO Computations QCD Phenomenology 

References

  1. [1]
    R.M. Harris and K. Kousouris, Searches for dijet resonances at hadron colliders, Int. J. Mod. Phys. A 26 (2011) 5005 [arXiv:1110.5302] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    CDF collaboration, F. Abe et al., Inclusive jet cross section in \( \overline{p}p \) collisions at \( \sqrt{s}=1.8 \) TeV, Phys. Rev. Lett. 77 (1996) 438 [hep-ex/9601008] [INSPIRE].
  3. [3]
    S.D. Ellis, Z. Kunszt and D.E. Soper, The one jet inclusive cross-section at order α s3 quarks and gluons, Phys. Rev. Lett. 64 (1990) 2121 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    F. Aversa, M. Greco, P. Chiappetta and J.P. Guillet, Jet inclusive production to O(α s3): comparison with data, Phys. Rev. Lett. 65 (1990) 401 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.D. Ellis, Z. Kunszt and D.E. Soper, Two jet production in hadron collisions at order α S3 in QCD, Phys. Rev. Lett. 69 (1992) 1496 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    W.T. Giele, E.W.N. Glover and D.A. Kosower, The two-jet differential cross section at \( \mathcal{O}\left({\alpha}_s^3\right) \) in hadron collisions, Phys. Rev. Lett. 73 (1994) 2019 [hep-ph/9403347] [INSPIRE].
  7. [7]
    J. Currie, E.W.N. Glover and J. Pires, NNLO QCD predictions for single jet inclusive production at the LHC, Phys. Rev. Lett. 118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Scharf, Electroweak corrections to b-jet and di-jet production, in the proceedings of the Meeting of the Division of the American Physical Society (DPF 2009), July 26-31, Detroit, U.S.A. (2009), arXiv:0910.0223 [INSPIRE].
  9. [9]
    S. Moretti, M.R. Nolten and D.A. Ross, Weak corrections to four-parton processes, Nucl. Phys. B 759 (2006) 50 [hep-ph/0606201] [INSPIRE].
  10. [10]
    S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 11 (2012) 095 [arXiv:1210.0438] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].
  12. [12]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].
  13. [13]
    A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].
  14. [14]
    A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 2. Factorization of collinear singularities, Eur. Phys. J. C 21 (2001) 63 [hep-ph/0104127] [INSPIRE].
  15. [15]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Electroweak and QCD corrections to top-pair hadroproduction in association with heavy bosons, JHEP 06 (2015) 184 [arXiv:1504.03446] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    S. Frixione, V. Hirschi, D. Pagani, H.S. Shao and M. Zaro, Weak corrections to Higgs hadroproduction in association with a top-quark pair, JHEP 09 (2014) 065 [arXiv:1407.0823] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
  19. [19]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].
  20. [20]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    R. Frederix, S. Frixione, A.S. Papanastasiou, S. Prestel and P. Torrielli, Off-shell single-top production at NLO matched to parton showers, JHEP 06 (2016) 027 [arXiv:1603.01178] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].
  23. [23]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  24. [24]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].
  27. [27]
    V. Hirschi, R. Frederix, S. Frixione, M.V. Garzelli, F. Maltoni and R. Pittau, Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, Comput. Phys. Commun. 185 (2014) 2771 [arXiv:1403.1229] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    V. Hirschi and T. Peraro, Tensor integrand reduction via Laurent expansion, JHEP 06 (2016) 060 [arXiv:1604.01363] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    H.-S. Shao, IREGI user manual, unpublished.Google Scholar
  32. [32]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    E.W.N. Glover and A.G. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [INSPIRE].ADSGoogle Scholar
  34. [34]
    CMS collaboration, Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range, Eur. Phys. J. C 75 (2015) 186 [arXiv:1412.1633] [INSPIRE].
  35. [35]
    CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J. C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].
  36. [36]
    ATLAS collaboration, Measurement of four-jet differential cross sections in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, JHEP 12 (2015) 105 [arXiv:1509.07335] [INSPIRE].
  37. [37]
    CMS collaboration, Measurement and QCD analysis of double-differential inclusive jet cross-sections in pp collisions at \( \sqrt{s}=8 \) TeV and ratios to 2.76 and 7 TeV, JHEP 03 (2017) 156 [arXiv:1609.05331] [INSPIRE].
  38. [38]
    CMS collaboration, Measurement of dijet azimuthal decorrelation in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 76(2016) 536 [arXiv:1602.04384] [INSPIRE].
  39. [39]
    CMS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s} = 2.76 \) TeV, Eur. Phys. J. C 76(2016) 265 [arXiv:1512.06212] [INSPIRE].
  40. [40]
    CMS collaboration, Measurement of the ratio of inclusive jet cross sections using the anti-k T algorithm with radius parameters R = 0.5 and 0.7 in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 90 (2014) 072006 [arXiv:1406.0324] [INSPIRE].
  41. [41]
    CMS collaboration, Study of hadronic event-shape variables in multijet final states in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 10 (2014) 87 [arXiv:1407.2856] [INSPIRE].
  42. [42]
    CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev. D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].
  43. [43]
    ATLAS collaboration, Measurement of three-jet production cross-sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, Eur. Phys. J. C 75 (2015) 228 [arXiv:1411.1855] [INSPIRE].
  44. [44]
    ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \( \sqrt{s}=7 \) TeV using 4.5 fb −1 of data with the ATLAS detector, JHEP 02 (2015) 153 [Erratum ibid. 09 (2015) 141] [arXiv:1410.8857] [INSPIRE].
  45. [45]
    ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059 [arXiv:1312.3524] [INSPIRE].
  46. [46]
    ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s} = 7 \) TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].
  47. [47]
    A. Denner, S. Dittmaier, T. Kasprzik and A. Muck, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Denner, L. Hofer, A. Scharf and S. Uccirati, Electroweak corrections to lepton pair production in association with two hard jets at the LHC, JHEP 01 (2015) 094 [arXiv:1411.0916] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W +multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    M. Chiesa, N. Greiner and F. Tramontano, Automation of electroweak corrections for LHC processes, J. Phys. G 43 (2016) 013002 [arXiv:1507.08579] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Catani and S. Frixione, in preparation.Google Scholar
  52. [52]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  54. [54]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
  55. [55]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].
  58. [58]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  59. [59]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].
  60. [60]
    A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, R. Pittau and P. Torrielli, Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    NNPDF collaboration, R.D. Ball et al., A Determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
  63. [63]
    M. Cacciari, M. Greco and P. Nason, The p T spectrum in heavy flavor hadroproduction, JHEP 05 (1998) 007 [hep-ph/9803400] [INSPIRE].
  64. [64]
    J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in the proceedings of the 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015), June 1-19, Les Houches, France (2015), arXiv:1605.04692 [INSPIRE].
  65. [65]
    S. Frixione and G. Ridolfi, Jet photoproduction at HERA, Nucl. Phys. B 507 (1997) 315 [hep-ph/9707345] [INSPIRE].
  66. [66]
    C. Schmidt, J. Pumplin, D. Stump and C.P. Yuan, CT14QED parton distribution functions from isolated photon production in deep inelastic scattering, Phys. Rev. D 93 (2016) 114015 [arXiv:1509.02905] [INSPIRE].ADSGoogle Scholar
  67. [67]
    L.A. Harland-Lang, V.A. Khoze and M.G. Ryskin, Photon-initiated processes at high mass, Phys. Rev. D 94 (2016) 074008 [arXiv:1607.04635] [INSPIRE].ADSGoogle Scholar
  68. [68]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [INSPIRE].
  69. [69]
    A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • R. Frederix
    • 1
  • S. Frixione
    • 2
  • V. Hirschi
    • 3
  • D. Pagani
    • 1
    • 4
  • H.-S. Shao
    • 5
  • M. Zaro
    • 6
    • 7
  1. 1.Physik Department T31, Technische Universität MünchenGarchingGermany
  2. 2.INFN — Sezione di GenovaGenoaItaly
  3. 3.SLAC, National Accelerator LaboratoryMenlo ParkU.S.A.
  4. 4.Centre for Cosmology, Particle Physics and Phenomenology (CP3)Université Catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.TH Department, CERNGeneva 23Switzerland
  6. 6.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHEParisFrance
  7. 7.CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations