Advertisement

Hunting for heavy majorana neutrinos with lepton number violating signatures at LHC

  • Chao Guo
  • Shu-Yuan Guo
  • Zhi-Long Han
  • Bin Li
  • Yi Liao
Open Access
Regular Article - Theoretical Physics

Abstract

The neutrinophilic two-Higgs-doublet model (ν2HDM) provides a natural way to generate tiny neutrino mass from interactions with the new doublet scalar Φ ν (H ± , H, A) and singlet neutrinos N R of TeV scale. In this paper, we perform detailed simulations for the lepton number violating (LNV) signatures at LHC arising from cascade decays of the new scalars and neutrinos with the mass order \( {m}_{N_R}<m{\varPhi}_{\nu } \) . Under constraints from lepton flavor violating processes and direct collider searches, their decay properties are explored and lead to three types of LNV signatures: Open image in new window , and 3 ± 4j. We find that the same-sign trilepton signature Open image in new window is quite unique and is the most promising discovery channel at the high-luminosity LHC. Our analysis also yields the 95% C.L. exclusion limits in the plane of the Φ ν and N R masses at 13 (14) TeV LHC with an integrated luminosity of 100 (3000) fb−1.

Keywords

Beyond Standard Model Neutrino Physics Higgs Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].
  3. [3]
    P. Minkowski, μeγ at a rate of one out of 109 muon decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  4. [4]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in the proceedings of the Workshop on unified theory and baryon number in the universe, O. Sawada and A. Sugamoto eds., KEK, Tsukuba, Japan (1979).Google Scholar
  5. [5]
    M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, D.Z. Freedman and P.van Nieuwenhuizen eds., North Holland, Amsterdam, The Netherlands (1979).Google Scholar
  6. [6]
    S.L. Glashow, The future of elementary particle physics, in Quarks and leptons, Cargèse lectures, M. Lévy et al. eds., Plenum Press, New York, U.S.A. (1980).Google Scholar
  7. [7]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  10. [10]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  11. [11]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  13. [13]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  14. [14]
    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  16. [16]
    E. Ma, Lepton number nonconservation in E 6 superstring models, Phys. Lett. B 191 (1987) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Left-right symmetry breaking in NJLS approach, Phys. Lett. B 368 (1996) 270 [hep-ph/9507275] [INSPIRE].
  18. [18]
    E.K. Akhmedov, M. Lindner, E. Schnapka and J.W.F. Valle, Dynamical left-right symmetry breaking, Phys. Rev. D 53 (1996) 2752 [hep-ph/9509255] [INSPIRE].
  19. [19]
    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].
  20. [20]
    K.S. Babu and C.N. Leung, Classification of effective neutrino mass operators, Nucl. Phys. B 619 (2001) 667 [hep-ph/0106054] [INSPIRE].
  21. [21]
    K.S. Babu, S. Nandi and Z. Tavartkiladze, New mechanism for neutrino mass generation and triply charged Higgs bosons at the LHC, Phys. Rev. D 80 (2009) 071702 [arXiv:0905.2710] [INSPIRE].ADSGoogle Scholar
  22. [22]
    F. Bonnet, D. Hernandez, T. Ota and W. Winter, Neutrino masses from higher than D = 5 effective operators, JHEP 10 (2009) 076 [arXiv:0907.3143] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    I. Picek and B. Radovcic, Novel TeV-scale seesaw mechanism with Dirac mediators, Phys. Lett. B 687 (2010) 338 [arXiv:0911.1374] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    Y. Liao, Unique neutrino mass operator at any mass dimension, Phys. Lett. B 694 (2011) 346 [arXiv:1009.1692] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    Y. Liao, Cascade seesaw for tiny neutrino mass, JHEP 06 (2011) 098 [arXiv:1011.3633] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  26. [26]
    B. Ren, K. Tsumura and X.-G. He, A Higgs quadruplet for type III seesaw and implications for μeγ and μe conversion, Phys. Rev. D 84 (2011) 073004 [arXiv:1107.5879] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K. Kumericki, I. Picek and B. Radovcic, Exotic seesaw-motivated heavy leptons at the LHC, Phys. Rev. D 84 (2011) 093002 [arXiv:1106.1069] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K. Kumericki, I. Picek and B. Radovcic, TeV-scale seesaw with quintuplet fermions, Phys. Rev. D 86 (2012) 013006 [arXiv:1204.6599] [INSPIRE].ADSGoogle Scholar
  29. [29]
    I. Picek and B. Radovcic, Enhancement of hγγ by seesaw-motivated exotic scalars, Phys. Lett. B 719 (2013) 404 [arXiv:1210.6449] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K.L. McDonald, Minimal tree-level seesaws with a heavy intermediate fermion, JHEP 07 (2013) 020 [arXiv:1303.4573] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    S.S.C. Law and K.L. McDonald, Generalized inverse seesaw mechanisms, Phys. Rev. D 87 (2013) 113003 [arXiv:1303.4887] [INSPIRE].ADSGoogle Scholar
  32. [32]
    A. Zee, A theory of lepton number violation, neutrino majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].
  33. [33]
    L. Wolfenstein, A theoretical pattern for neutrino oscillations, Nucl. Phys. B 175 (1980) 93 [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    K.S. Babu, Model ofcalculableMajorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K.S. Babu and E. Ma, Natural hierarchy of radiatively induced Majorana neutrino masses, Phys. Rev. Lett. 61 (1988) 674 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
  38. [38]
    J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μeγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].
  39. [39]
    P.-H. Gu and U. Sarkar, Radiative neutrino mass, dark matter and leptogenesis, Phys. Rev. D 77 (2008) 105031 [arXiv:0712.2933] [INSPIRE].ADSGoogle Scholar
  40. [40]
    D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev. D 79 (2009) 013011 [arXiv:0808.3340] [INSPIRE].ADSGoogle Scholar
  41. [41]
    E. Ma and D. Suematsu, Fermion triplet dark matter and radiative neutrino mass, Mod. Phys. Lett. A 24 (2009) 583 [arXiv:0809.0942] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  42. [42]
    S. Kanemura, T. Nabeshima and H. Sugiyama, Neutrino masses from loop-induced Dirac Yukawa couplings, Phys. Lett. B 703 (2011) 66 [arXiv:1106.2480] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Kanemura, O. Seto and T. Shimomura, Masses of dark matter and neutrino from TeV scale spontaneous U (1)BL breaking, Phys. Rev. D 84 (2011) 016004 [arXiv:1101.5713] [INSPIRE].ADSGoogle Scholar
  44. [44]
    S. Kanemura and H. Sugiyama, Dark matter and a suppression mechanism for neutrino masses in the Higgs triplet model, Phys. Rev. D 86 (2012) 073006 [arXiv:1202.5231] [INSPIRE].ADSGoogle Scholar
  45. [45]
    F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    H. Okada and T. Toma, Fermionic dark matter in radiative inverse seesaw model with U(1)BL, Phys. Rev. D 86 (2012) 033011 [arXiv:1207.0864] [INSPIRE].ADSGoogle Scholar
  47. [47]
    P.S.B. Dev and A. Pilaftsis, Minimal radiative neutrino mass mechanism for inverse seesaw models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].ADSGoogle Scholar
  48. [48]
    D. Schmidt, T. Schwetz and T. Toma, Direct detection of leptophilic dark matter in a model with radiative neutrino masses, Phys. Rev. D 85 (2012) 073009 [arXiv:1201.0906] [INSPIRE].ADSGoogle Scholar
  49. [49]
    M. Hirsch, R.A. Lineros, S. Morisi, J. Palacio, N. Rojas and J.W.F. Valle, WIMP dark matter as radiative neutrino mass messenger, JHEP 10 (2013) 149 [arXiv:1307.8134] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    S.S.C. Law and K.L. McDonald, A class of inert N-tuplet models with radiative neutrino mass and dark matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S. Kanemura, T. Matsui and H. Sugiyama, Loop suppression of Dirac neutrino mass in the neutrinophilic two Higgs doublet model, Phys. Lett. B 727 (2013) 151 [arXiv:1305.4521] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    D. Restrepo, O. Zapata and C.E. Yaguna, Models with radiative neutrino masses and viable dark matter candidates, JHEP 11 (2013) 011 [arXiv:1308.3655] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    V. Brdar, I. Picek and B. Radovcic, Radiative neutrino mass with scotogenic scalar triplet, Phys. Lett. B 728 (2014) 198 [arXiv:1310.3183] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    H. Okada and K. Yagyu, Radiative generation of lepton masses with the U(1) gauge symmetry, Phys. Rev. D 90 (2014) 035019 [arXiv:1405.2368] [INSPIRE].ADSGoogle Scholar
  55. [55]
    W. Wang and Z.-L. Han, Radiative linear seesaw model, dark matter and U(1)BL, Phys. Rev. D 92 (2015) 095001 [arXiv:1508.00706] [INSPIRE].ADSGoogle Scholar
  56. [56]
    R. Longas, D. Portillo, D. Restrepo and O. Zapata, The inert Zee model, JHEP 03 (2016) 162 [arXiv:1511.01873] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Adhikari, D. Borah and E. Ma, New U(1) gauge model of radiative lepton masses with sterile neutrino and dark matter, Phys. Lett. B 755 (2016) 414 [arXiv:1512.05491] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  58. [58]
    H. Okada and Y. Orikasa, Radiative neutrino model with an inert triplet scalar, Phys. Rev. D 94 (2016) 055002 [arXiv:1512.06687] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. Ibarra, C.E. Yaguna and O. Zapata, Direct detection of fermion dark matter in the radiative seesaw model, Phys. Rev. D 93 (2016) 035012 [arXiv:1601.01163] [INSPIRE].ADSGoogle Scholar
  60. [60]
    R. Ding, Z.-L. Han, Y. Liao and X.-D. Ma, Interpretation of 750 GeV diphoton excess at LHC in singlet extension of color-octet neutrino mass model, Eur. Phys. J. C 76 (2016) 204 [arXiv:1601.02714] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Ahriche, K.L. McDonald, S. Nasri and I. Picek, A critical analysis of one-loop neutrino mass models with minimal dark matter, Phys. Lett. B 757 (2016) 399 [arXiv:1603.01247] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  62. [62]
    C. Kownacki and E. Ma, Gauge U(1) dark symmetry and radiative light fermion masses, Phys. Lett. B 760 (2016) 59 [arXiv:1604.01148] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    E. Ma, N. Pollard, O. Popov and M. Zakeri, Gauge BL model of radiative neutrino mass with multipartite dark matter, Mod. Phys. Lett. A 31 (2016) 1650163 [arXiv:1605.00991] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  64. [64]
    T. Nomura, H. Okada and Y. Orikasa, SU(2)L septet scalar linking to a radiative neutrino model, Phys. Rev. D 94 (2016) 055012 [arXiv:1605.02601] [INSPIRE].ADSGoogle Scholar
  65. [65]
    T. Nomura and H. Okada, Radiatively induced quark and lepton mass model, Phys. Lett. B 761 (2016) 190 [arXiv:1606.09055] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P.-H. Gu, E. Ma and U. Sarkar, Connecting radiative neutrino mass, neutron-antineutron oscillation, proton decay and leptogenesis through dark matter, Phys. Rev. D 94 (2016) 111701 [arXiv:1608.02118] [INSPIRE].ADSGoogle Scholar
  67. [67]
    D. Borah and A. Dasgupta, Common origin of neutrino mass, dark matter and Dirac leptogenesis, JCAP 12 (2016) 034 [arXiv:1608.03872] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    S.-Y. Guo, Z.-L. Han and Y. Liao, Testing the type-II radiative seesaw model: From dark matter detection to LHC signatures, Phys. Rev. D 94 (2016) 115014 [arXiv:1609.01018] [INSPIRE].ADSGoogle Scholar
  69. [69]
    T. Nomura, H. Okada and Y. Orikasa, Radiative neutrino model with SU(2)L triplet fields, Phys. Rev. D 94 (2016) 115018 [arXiv:1610.04729] [INSPIRE].ADSGoogle Scholar
  70. [70]
    W. Wang and Z.-L. Han, Naturally small Dirac neutrino mass with intermediate SU(2)l multiplet fields, arXiv:1611.03240 [INSPIRE].
  71. [71]
    L.T. Hue, A.B. Arbuzov, N.T.K. Ngan and H.N. Long, Probing neutrino and Higgs sectors in SU(2)1 × SU(2)2 × U(1)Y model with lepton-flavor non-universality, arXiv:1611.06801 [INSPIRE].
  72. [72]
    E. Ma, Z(3) dark matter and two-loop neutrino mass, Phys. Lett. B 662 (2008) 49 [arXiv:0708.3371] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Kanemura, T. Nabeshima and H. Sugiyama, TeV-scale seesaw with loop-induced Dirac mass term and dark matter from U (1)BL gauge symmetry breaking, Phys. Rev. D 85 (2012) 033004 [arXiv:1111.0599] [INSPIRE].ADSGoogle Scholar
  74. [74]
    S. Baek, P. Ko, H. Okada and E. Senaha, Can Zee-Babu model implemented with scalar dark matter explain both Fermi/LAT 130 GeV γ-ray excess and neutrino physics?, JHEP 09 (2014) 153 [arXiv:1209.1685] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    Y. Kajiyama, H. Okada and K. Yagyu, Two loop radiative seesaw model with inert triplet scalar field, Nucl. Phys. B 874 (2013) 198 [arXiv:1303.3463] [INSPIRE].ADSMathSciNetMATHCrossRefGoogle Scholar
  76. [76]
    Y. Kajiyama, H. Okada and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 (2013) 015029 [arXiv:1303.7356] [INSPIRE].ADSGoogle Scholar
  77. [77]
    S. Baek, H. Okada and T. Toma, Two loop neutrino model and dark matter particles with global B-L symmetry, JCAP 06 (2014) 027 [arXiv:1312.3761] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    H. Okada, Two loop induced Dirac neutrino model and dark matters with global U(1) symmetry, arXiv:1404.0280 [INSPIRE].
  79. [79]
    S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged U (1) BL breaking, Phys. Rev. D 90 (2014) 013001 [arXiv:1405.1935] [INSPIRE].ADSGoogle Scholar
  80. [80]
    M. Aoki and T. Toma, Impact of semi-annihilation of ℤ 3 symmetric dark matter with radiative neutrino masses, JCAP 09 (2014) 016 [arXiv:1405.5870] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    H. Okada, T. Toma and K. Yagyu, Inert extension of the Zee-Babu model, Phys. Rev. D 90 (2014) 095005 [arXiv:1408.0961] [INSPIRE].ADSGoogle Scholar
  82. [82]
    D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, Systematic classification of two-loop realizations of the Weinberg operator, JHEP 03 (2015) 040 [arXiv:1411.7038] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    H. Okada, Two loop radiative seesaw and X-ray line dark matter with global U(1) symmetry, arXiv:1503.04557 [INSPIRE].
  84. [84]
    S. Kashiwase, H. Okada, Y. Orikasa and T. Toma, Two loop neutrino model with dark matter and leptogenesis, Int. J. Mod. Phys. A 31 (2016) 1650121 [arXiv:1505.04665] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    H. Okada and Y. Orikasa, Two-loop neutrino model with exotic leptons, Phys. Rev. D 93 (2016) 013008 [arXiv:1509.04068] [INSPIRE].ADSGoogle Scholar
  86. [86]
    R. Ding, Z.-L. Han, Y. Liao and W.-P. Xie, Radiative neutrino mass with ℤ 3 dark matter: from relic density to LHC signatures, JHEP 05 (2016) 030 [arXiv:1601.06355] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    T. Nomura and H. Okada, Generalized Zee-Babu model with 750 GeV diphoton resonance, Phys. Lett. B 756 (2016) 295 [arXiv:1601.07339] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    T. Nomura, H. Okada and Y. Orikasa, Radiative neutrino mass in alternative left-right model, Eur. Phys. J. C 77 (2017) 103 [arXiv:1602.08302] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    C. Bonilla, E. Ma, E. Peinado and J.W.F. Valle, Two-loop Dirac neutrino mass and WIMP dark matter, Phys. Lett. B 762 (2016) 214 [arXiv:1607.03931] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    T. Nomura and H. Okada, An extended colored Zee-Babu model, Phys. Rev. D 94 (2016) 075021 [arXiv:1607.04952] [INSPIRE].ADSGoogle Scholar
  91. [91]
    W.-F. Chang, S.-C. Liou, C.-F. Wong and F. Xu, Charged lepton flavor violating processes and scalar leptoquark decay branching ratios in the colored Zee-Babu model, JHEP 10 (2016)106 [arXiv:1608.05511] [INSPIRE].
  92. [92]
    T. Nomura and H. Okada, Two-loop induced Majorana neutrino mass in a radiatively induced quark and lepton mass model, Phys. Rev. D 94 (2016) 093006 [arXiv:1609.01504] [INSPIRE].ADSGoogle Scholar
  93. [93]
    L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].
  94. [94]
    K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter model, Phys. Rev. D 69 (2004) 113009 [hep-ph/0403003] [INSPIRE].
  95. [95]
    M. Aoki, S. Kanemura and O. Seto, Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett. 102 (2009) 051805 [arXiv:0807.0361] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    M. Gustafsson, J.M. No and M.A. Rivera, Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett. 110 (2013) 211802 [arXiv:1212.4806] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J.N. Ng and A. de la Puente, Top quark as a dark portal and neutrino mass generation, Phys. Lett. B 727 (2013) 204 [arXiv:1307.2606] [INSPIRE].ADSCrossRefGoogle Scholar
  98. [98]
    Y. Kajiyama, H. Okada and K. Yagyu, T 7 flavor model in three loop seesaw and Higgs phenomenology, JHEP 10 (2013) 196 [arXiv:1307.0480] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    A. Ahriche, C.-S. Chen, K.L. McDonald and S. Nasri, Three-loop model of neutrino mass with dark matter, Phys. Rev. D 90 (2014) 015024 [arXiv:1404.2696] [INSPIRE].ADSGoogle Scholar
  100. [100]
    H. Hatanaka, K. Nishiwaki, H. Okada and Y. Orikasa, A three-loop neutrino model with global U(1) symmetry, Nucl. Phys. B 894 (2015) 268 [arXiv:1412.8664] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  101. [101]
    K. Nishiwaki, H. Okada and Y. Orikasa, Three loop neutrino model with isolated k ±±, Phys. Rev. D 92 (2015) 093013 [arXiv:1507.02412] [INSPIRE].ADSGoogle Scholar
  102. [102]
    H. Okada and K. Yagyu, Three-loop neutrino mass model with doubly charged particles from isodoublets, Phys. Rev. D 93 (2016) 013004 [arXiv:1508.01046] [INSPIRE].ADSGoogle Scholar
  103. [103]
    A. Ahriche, K.L. McDonald and S. Nasri, A radiative model for the weak scale and neutrino mass via dark matter, JHEP 02 (2016) 038 [arXiv:1508.02607] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    S. Kanemura, K. Nishiwaki, H. Okada, Y. Orikasa, S.C. Park and R. Watanabe, LHC 750 GeV diphoton excess in a radiative seesaw model, PTEP 2016 (2016) 123B04 [arXiv:1512.09048] [INSPIRE].
  105. [105]
    H. Okada and K. Yagyu, Renormalizable model for neutrino mass, dark matter, muon g − 2 and 750 GeV diphoton excess, Phys. Lett. B 756 (2016) 337 [arXiv:1601.05038] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    P. Ko, T. Nomura, H. Okada and Y. Orikasa, Confronting a new three-loop seesaw model with the 750 GeV diphoton excess, Phys. Rev. D 94 (2016) 013009 [arXiv:1602.07214] [INSPIRE].ADSGoogle Scholar
  107. [107]
    T. Nomura, H. Okada and Y. Orikasa, Radiative seesaw model with degenerate Majorana dark matter, Phys. Rev. D 93 (2016) 113008 [arXiv:1603.04631] [INSPIRE].ADSGoogle Scholar
  108. [108]
    D. Cherigui, C. Guella, A. Ahriche and S. Nasri, Probing radiative neutrino mass models using trilepton channel at the LHC, Phys. Lett. B 762 (2016) 225 [arXiv:1605.03640] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    T. Nomura, H. Okada and N. Okada, A colored KNT neutrino model, Phys. Lett. B 762 (2016) 409 [arXiv:1608.02694] [INSPIRE].ADSCrossRefGoogle Scholar
  110. [110]
    K. Cheung, H. Ishida and H. Okada, Accommodation of the Dirac phase in the Krauss-Nasri-Trodden model, arXiv:1609.06231 [INSPIRE].
  111. [111]
    K. Cheung, T. Nomura and H. Okada, Three-loop neutrino mass model with a colored triplet scalar, Phys. Rev. D 95 (2017) 015026 [arXiv:1610.04986] [INSPIRE].ADSGoogle Scholar
  112. [112]
    S.M. Boucenna, S. Morisi and J.W.F. Valle, The low-scale approach to neutrino masses, Adv. High Energy Phys. 2014 (2014) 831598 [arXiv:1404.3751] [INSPIRE].CrossRefGoogle Scholar
  113. [113]
    M.-C. Chen and J. Huang, TeV scale models of neutrino masses and their phenomenology, Mod. Phys. Lett. A 26 (2011) 1147 [arXiv:1105.3188] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  114. [114]
    E. Ma, Naturally small seesaw neutrino mass with no new physics beyond the TeV scale, Phys. Rev. Lett. 86 (2001) 2502 [hep-ph/0011121] [INSPIRE].
  115. [115]
    E. Ma and D.P. Roy, Heavy triplet leptons and new gauge boson, Nucl. Phys. B 644 (2002) 290 [hep-ph/0206150] [INSPIRE].
  116. [116]
    F. Wang, W. Wang and J.M. Yang, Split two-Higgs-doublet model and neutrino condensation, Europhys. Lett. 76 (2006) 388 [hep-ph/0601018] [INSPIRE].
  117. [117]
    S. Gabriel and S. Nandi, A new two Higgs doublet model, Phys. Lett. B 655 (2007) 141 [hep-ph/0610253] [INSPIRE].
  118. [118]
    S.M. Davidson and H.E. Logan, Dirac neutrinos from a second Higgs doublet, Phys. Rev. D 80 (2009) 095008 [arXiv:0906.3335] [INSPIRE].ADSGoogle Scholar
  119. [119]
    P. Bandyopadhyay, S. Choubey and M. Mitra, Two Higgs doublet type III seesaw with μ-τ symmetry at LHC, JHEP 10 (2009) 012 [arXiv:0906.5330] [INSPIRE].ADSCrossRefGoogle Scholar
  120. [120]
    G. Marshall, M. McCaskey and M. Sher, A supersymmetric model with Dirac neutrino masses, Phys. Rev. D 81 (2010) 053006 [arXiv:0912.1599] [INSPIRE].ADSGoogle Scholar
  121. [121]
    N. Haba and K. Tsumura, ν-two Higgs doublet model and its collider phenomenology, JHEP 06 (2011) 068 [arXiv:1105.1409] [INSPIRE].
  122. [122]
    N. Haba, K. Kaneta and Y. Shimizu, Phenomenology of supersymmetry SU(5) GUT with neutrinophilic Higgs boson, Phys. Rev. D 86 (2012) 015019 [arXiv:1204.4254] [INSPIRE].ADSGoogle Scholar
  123. [123]
    U. Maitra, B. Mukhopadhyaya, S. Nandi, S.K. Rai and A. Shivaji, Searching for an elusive charged Higgs boson at the Large Hadron Collider, Phys. Rev. D 89 (2014) 055024 [arXiv:1401.1775] [INSPIRE].ADSGoogle Scholar
  124. [124]
    S. Chakdar, K. Ghosh and S. Nandi, A predictive model of Dirac neutrinos, Phys. Lett. B 734 (2014) 64 [arXiv:1403.1544] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    O. Seto, Large invisible decay of a Higgs boson to neutrinos, Phys. Rev. D 92 (2015) 073005 [arXiv:1507.06779] [INSPIRE].ADSGoogle Scholar
  126. [126]
    F.-X. Josse-Michaux and E. Molinaro, A common framework for dark matter, leptogenesis and neutrino masses, Phys. Rev. D 84 (2011) 125021 [arXiv:1108.0482] [INSPIRE].ADSGoogle Scholar
  127. [127]
    P. Mitropoulos, Right-handed sneutrinos as asymmetric DM and neutrino masses from neutrinophilic Higgs bosons, JCAP 11 (2013) 008 [arXiv:1307.2823] [INSPIRE].ADSCrossRefGoogle Scholar
  128. [128]
    K.-Y. Choi, O. Seto and C.S. Shin, Phenomenology in supersymmetric neutrinophilic Higgs model with sneutrino dark matter, JHEP 09 (2014) 068 [arXiv:1406.0228] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    A. Adulpravitchai and M.A. Schmidt, Sterile neutrino dark matter production in the neutrino-phillic two Higgs doublet model, JHEP 12 (2015) 023 [arXiv:1507.05694] [INSPIRE].ADSGoogle Scholar
  130. [130]
    S. Baek and T. Nomura, Dark matter physics in neutrino specific two Higgs doublet model, JHEP 03 (2017) 059 [arXiv:1611.09145] [INSPIRE].ADSCrossRefGoogle Scholar
  131. [131]
    N. Haba and O. Seto, Low scale thermal leptogenesis in neutrinophilic Higgs doublet models, Prog. Theor. Phys. 125 (2011) 1155 [arXiv:1102.2889] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  132. [132]
    N. Haba and O. Seto, Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model, Phys. Rev. D 84 (2011) 103524 [arXiv:1106.5354] [INSPIRE].ADSMATHGoogle Scholar
  133. [133]
    W. Chao and M.J. Ramsey-Musolf, Hidden from view: Neutrino masses, dark matter and TeV-scale leptogenesis in a neutrinophilic two-Higgs-doublet model, Phys. Rev. D 89 (2014) 033007 [arXiv:1212.5709] [INSPIRE].ADSGoogle Scholar
  134. [134]
    N. Haba, O. Seto and Y. Yamaguchi, Neutrino mass from neutrinophilic Higgs and leptogenesis, arXiv:1401.6646 [INSPIRE].
  135. [135]
    J.D. Clarke, R. Foot and R.R. Volkas, Natural leptogenesis and neutrino masses with two Higgs doublets, Phys. Rev. D 92 (2015) 033006 [arXiv:1505.05744] [INSPIRE].ADSGoogle Scholar
  136. [136]
    N. Haba and M. Hirotsu, TeV-scale seesaw from a multi-Higgs model, Eur. Phys. J. C 69 (2010) 481 [arXiv:1005.1372] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via Majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195 [hep-ph/9311257] [INSPIRE].
  138. [138]
    F.M.L. Almeida, Jr., Y. do Amaral Coutinho, J.A. Martins Simoes and M.A.B. do Vale, On a signature for heavy Majorana neutrinos in hadronic collisions, Phys. Rev. D 62 (2000) 075004 [hep-ph/0002024] [INSPIRE].
  139. [139]
    O. Panella, M. Cannoni, C. Carimalo and Y.N. Srivastava, Signals of heavy Majorana neutrinos at hadron colliders, Phys. Rev. D 65 (2002) 035005 [hep-ph/0107308] [INSPIRE].
  140. [140]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].
  141. [141]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  142. [142]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The search for heavy Majorana neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].ADSGoogle Scholar
  144. [144]
    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s}=8 \) TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].ADSCrossRefGoogle Scholar
  145. [145]
    P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New production mechanism for heavy neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from W γ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of heavy neutrino searches at future lepton colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].ADSGoogle Scholar
  148. [148]
    J.N. Ng, A. de la Puente and B. W.-P. Pan, Search for heavy right-handed neutrinos at the LHC and beyond in the same-sign same-flavor leptons final state, JHEP 12 (2015) 172 [arXiv:1505.01934] [INSPIRE].ADSGoogle Scholar
  149. [149]
    A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].ADSGoogle Scholar
  150. [150]
    R. Leonardi, L. Alunni, F. Romeo, L. Fanò and O. Panella, Hunting for heavy composite Majorana neutrinos at the LHC, Eur. Phys. J. C 76 (2016) 593 [arXiv:1510.07988] [INSPIRE].ADSCrossRefGoogle Scholar
  151. [151]
    A. Das, P. Konar and S. Majhi, Production of heavy neutrino in next-to-leading order QCD at the LHC and beyond, JHEP 06 (2016) 019 [arXiv:1604.00608] [INSPIRE].ADSCrossRefGoogle Scholar
  152. [152]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  153. [153]
    J. Chakrabortty, J. Gluza, R. Sevillano and R. Szafron, Left-right symmetry at LHC and precise 1-loop low energy data, JHEP 07 (2012) 038 [arXiv:1204.0736] [INSPIRE].ADSCrossRefGoogle Scholar
  154. [154]
    J. Gluza, T. Jelinski and R. Szafron, Lepton number violation andDiracnessof massive neutrinos composed of Majorana states, Phys. Rev. D 93 (2016) 113017 [arXiv:1604.01388] [INSPIRE].ADSGoogle Scholar
  155. [155]
    S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches at future e e + , pp and ep colliders, arXiv:1612.02728 [INSPIRE].
  156. [156]
    Z.-z. Xing, Naturalness and testability of TeV seesaw mechanisms, Prog. Theor. Phys. Suppl. 180 (2009) 112 [arXiv:0905.3903] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  157. [157]
    X.-G. He, S. Oh, J. Tandean and C.-C. Wen, Large mixing of light and heavy neutrinos in seesaw models and the LHC, Phys. Rev. D 80 (2009) 073012 [arXiv:0907.1607] [INSPIRE].ADSGoogle Scholar
  158. [158]
    W.-Y. Keung and G. Senjanović, Majorana neutrinos and the production of the right-handed charged gauge boson, Phys. Rev. Lett. 50 (1983) 1427 [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    K. Huitu, S. Khalil, H. Okada and S.K. Rai, Signatures for right-handed neutrinos at the Large Hadron Collider, Phys. Rev. Lett. 101 (2008) 181802 [arXiv:0803.2799] [INSPIRE].ADSCrossRefGoogle Scholar
  160. [160]
    L. Basso, A. Belyaev, S. Moretti and C.H. Shepherd-Themistocleous, Phenomenology of the minimal B-L extension of the standard model: Z and neutrinos, Phys. Rev. D 80 (2009) 055030 [arXiv:0812.4313] [INSPIRE].ADSGoogle Scholar
  161. [161]
    D.G. Cerdeno and O. Seto, Right-handed sneutrino dark matter in the NMSSM, JCAP 08 (2009) 032 [arXiv:0903.4677] [INSPIRE].ADSCrossRefGoogle Scholar
  162. [162]
    L. Basso, Phenomenology of the minimal B-L extension of the standard model at the LHC, arXiv:1106.4462 [INSPIRE].
  163. [163]
    C.-Y. Chen and P.S.B. Dev, Multi-lepton collider signatures of heavy Dirac and Majorana neutrinos, Phys. Rev. D 85 (2012) 093018 [arXiv:1112.6419] [INSPIRE].ADSGoogle Scholar
  164. [164]
    C.-Y. Chen, P.S.B. Dev and R.N. Mohapatra, Probing heavy-light neutrino mixing in left-right seesaw models at the LHC, Phys. Rev. D 88 (2013) 033014 [arXiv:1306.2342] [INSPIRE].ADSGoogle Scholar
  165. [165]
    S.P. Das, F.F. Deppisch, O. Kittel and J.W.F. Valle, Heavy neutrinos and lepton flavour violation in left-right symmetric models at the LHC, Phys. Rev. D 86 (2012) 055006 [arXiv:1206.0256] [INSPIRE].ADSGoogle Scholar
  166. [166]
    T. Han, I. Lewis, R. Ruiz and Z.-g. Si, Lepton number violation and W chiral couplings at the LHC, Phys. Rev. D 87 (2013) 035011 [arXiv:1211.6447] [INSPIRE].ADSGoogle Scholar
  167. [167]
    J. Gluza and T. Jelinski, Heavy neutrinos and the pplljj CMS data, Phys. Lett. B 748 (2015) 125 [arXiv:1504.05568] [INSPIRE].ADSCrossRefGoogle Scholar
  168. [168]
    A.M. Gago, P. Hernández, J. Jones-Pérez, M. Losada and A. Moreno Briceño, Probing the type I seesaw mechanism with displaced vertices at the LHC, Eur. Phys. J. C 75 (2015) 470 [arXiv:1505.05880] [INSPIRE].ADSCrossRefGoogle Scholar
  169. [169]
    Z. Kang, P. Ko and J. Li, New avenues to heavy right-handed neutrinos with pair production at hadronic colliders, Phys. Rev. D 93 (2016) 075037 [arXiv:1512.08373] [INSPIRE].ADSGoogle Scholar
  170. [170]
    M. Lindner, F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Left-right symmetry and lepton number violation at the large hadron electron collider, JHEP 06 (2016) 140 [arXiv:1604.08596] [INSPIRE].ADSCrossRefGoogle Scholar
  171. [171]
    M. Mitra, R. Ruiz, D.J. Scott and M. Spannowsky, Neutrino jets from high-mass W R gauge bosons in TeV-scale left-right symmetric models, Phys. Rev. D 94 (2016) 095016 [arXiv:1607.03504] [INSPIRE].ADSGoogle Scholar
  172. [172]
    E. Accomando, L. Delle Rose, S. Moretti, E. Olaiya and C. Shepherd-Themistocleous, Novel SM-like Higgs decay into displaced heavy neutrino pairs in U(1) models, arXiv:1612.05977 [INSPIRE].
  173. [173]
    W. Wang and Z.-L. Han, Global U(1)L breaking in neutrinophilic 2HDM: from LHC signatures to X-ray line, Phys. Rev. D 94 (2016) 053015 [arXiv:1605.00239] [INSPIRE].ADSGoogle Scholar
  174. [174]
    G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].ADSCrossRefGoogle Scholar
  175. [175]
    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
  176. [176]
    T. Morozumi, H. Takata and K. Tamai, Quantum correction to tiny vacuum expectation value in two Higgs doublet model for Dirac neutrino mass, Phys. Rev. D 85 (2012) 055002 [arXiv:1107.1026] [INSPIRE].ADSGoogle Scholar
  177. [177]
    N. Haba and T. Horita, Vacuum stability in neutrinophilic Higgs doublet model, Phys. Lett. B 705 (2011) 98 [arXiv:1107.3203] [INSPIRE].ADSCrossRefGoogle Scholar
  178. [178]
    ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  179. [179]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  180. [180]
    ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  181. [181]
    P.A.N. Machado, Y.F. Perez, O. Sumensari, Z. Tabrizi and R.Z. Funchal, On the viability of minimal neutrinophilic two-Higgs-doublet models, JHEP 12 (2015) 160 [arXiv:1507.07550] [INSPIRE].ADSGoogle Scholar
  182. [182]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  183. [183]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and muone, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].
  184. [184]
    A. Ibarra and G.G. Ross, Neutrino phenomenology: the case of two right-handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [INSPIRE].
  185. [185]
    P. Fileviez Perez, T. Han and T. Li, Testability of type I seesaw at the CERN LHC: revealing the existence of the B-L symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [INSPIRE].ADSGoogle Scholar
  186. [186]
    ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  187. [187]
    J. Lesgourgues and S. Pastor, Neutrino mass from cosmology, Adv. High Energy Phys. 2012 (2012) 608515 [arXiv:1212.6154] [INSPIRE].MATHCrossRefGoogle Scholar
  188. [188]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron. Astrophys. 571 (2014) A16 [arXiv:1303.5076] [INSPIRE].
  189. [189]
    S.M. Bilenky and C. Giunti, Neutrinoless double-beta decay: a brief review, Mod. Phys. Lett. A 27 (2012) 1230015 [arXiv:1203.5250] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  190. [190]
    S. Dell’Oro, S. Marcocci, M. Viel and F. Vissani, Neutrinoless double beta decay: 2015 review, Adv. High Energy Phys. 2016 (2016) 2162659 [arXiv:1601.07512] [INSPIRE].CrossRefGoogle Scholar
  191. [191]
    EXO-200 collaboration, M. Auger et al., Search for neutrinoless double-beta decay in 136 Xe with EXO-200, Phys. Rev. Lett. 109 (2012) 032505 [arXiv:1205.5608] [INSPIRE].
  192. [192]
    EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229 [arXiv:1402.6956] [INSPIRE].
  193. [193]
    KamLAND-Zen collaboration, A. Gando et al., Limit on neutrinoless ββ decay of 136 Xe from the first phase of KamLAND-Zen and comparison with the positive claim in 76 Ge, Phys. Rev. Lett. 110 (2013) 062502 [arXiv:1211.3863] [INSPIRE].
  194. [194]
    KamLAND-Zen collaboration, A. Gando et al., Search for Majorana neutrinos near the inverted mass hierarchy region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503 [arXiv:1605.02889] [INSPIRE].
  195. [195]
    E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment and lepton flavor nonconservation, Phys. Rev. Lett. 87 (2001) 011802 [Erratum ibid. 87 (2001) 159901] [hep-ph/0102255] [INSPIRE].
  196. [196]
    E. Bertuzzo, Y.F. Perez G., O. Sumensari and R. Zukanovich Funchal, Limits on neutrinophilic two-Higgs-doublet models from flavor physics, JHEP 01 (2016) 018 [arXiv:1510.04284] [INSPIRE].
  197. [197]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  198. [198]
    MEG collaboration, A.M. Baldini et al., Search for the lepton flavour violating decay μ +e + γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].
  199. [199]
    R. Ding, Z.-L. Han, Y. Liao, H.-J. Liu and J.-Y. Liu, Phenomenology in the minimal cascade seesaw mechanism for neutrino masses, Phys. Rev. D 89 (2014) 115024 [arXiv:1403.2040] [INSPIRE].ADSGoogle Scholar
  200. [200]
    T. Toma and A. Vicente, Lepton flavor violation in the scotogenic model, JHEP 01 (2014) 160 [arXiv:1312.2840] [INSPIRE].ADSCrossRefGoogle Scholar
  201. [201]
    T. Fukuyama, H. Sugiyama and K. Tsumura, Constraints from muon g − 2 and LFV processes in the Higgs triplet model, JHEP 03 (2010) 044 [arXiv:0909.4943] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  202. [202]
    Z.-L. Han, R. Ding and Y. Liao, LHC phenomenology of type II seesaw: nondegenerate case, Phys. Rev. D 91 (2015) 093006 [arXiv:1502.05242] [INSPIRE].ADSGoogle Scholar
  203. [203]
    Z.-L. Han, R. Ding and Y. Liao, LHC phenomenology of the type-II seesaw mechanism: observability of neutral scalars in the nondegenerate case, Phys. Rev. D 92 (2015) 033014 [arXiv:1506.08996] [INSPIRE].ADSGoogle Scholar
  204. [204]
    S.M. Davidson and H.E. Logan, LHC phenomenology of a two-Higgs-doublet neutrino mass model, Phys. Rev. D 82 (2010) 115031 [arXiv:1009.4413] [INSPIRE].ADSGoogle Scholar
  205. [205]
    ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05(2014) 071 [arXiv:1403.5294][INSPIRE].
  206. [206]
    CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W , Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].
  207. [207]
    LEP, DELPHI, OPAL, ALEPH, L3 collaboration, G. Abbiendi et al., Search for charged Higgs bosons: combined results using LEP data, Eur. Phys. J. C 73 (2013) 2463 [arXiv:1301.6065] [INSPIRE].
  208. [208]
    DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].
  209. [209]
    L3 collaboration, P. Achard et al., Search for heavy isosinglet neutrino in e + e annihilation at LEP, Phys. Lett. B 517 (2001) 67 [hep-ex/0107014] [INSPIRE].
  210. [210]
    CMS collaboration, Search for heavy Majorana neutrinos in μ ± μ ±+ jets and e ± e ±+ jets events in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 717 (2012) 109 [arXiv:1207.6079] [INSPIRE].
  211. [211]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  212. [212]
    CMS collaboration, Search for heavy Majorana neutrinos in e ± e ± + jets and e ± μ ±+ jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 04 (2016) 169 [arXiv:1603.02248] [INSPIRE].
  213. [213]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  214. [214]
    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].ADSCrossRefGoogle Scholar
  215. [215]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  216. [216]
    C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  217. [217]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  218. [218]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  219. [219]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  220. [220]
    NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
  221. [221]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  222. [222]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  223. [223]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
  224. [224]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  225. [225]
    E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].CrossRefGoogle Scholar
  226. [226]
    B. Dumont et al., Toward a public analysis database for LHC new physics searches using MADANALYSIS 5, Eur. Phys. J. C 75 (2015) 56 [arXiv:1407.3278] [INSPIRE].ADSCrossRefGoogle Scholar
  227. [227]
    M. Drees, H. Dreiner, D. Schmeier, J. Tattersall and J.S. Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2015) 227 [arXiv:1312.2591] [INSPIRE].ADSCrossRefGoogle Scholar
  228. [228]
    D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, CheckMATE 2: from the model to the limit, arXiv:1611.09856 [INSPIRE].
  229. [229]
    S. Hoeche et al., Matching parton showers and matrix elements, hep-ph/0602031 [INSPIRE].
  230. [230]
    CMS collaboration, Identification of b-quark jets with the CMS experiment, 2013 JINST 8 P04013 [arXiv:1211.4462] [INSPIRE].
  231. [231]
    ATLAS collaboration, Performance of b-jet identification in the ATLAS experiment, 2016 JINST 11 P04008 [arXiv:1512.01094] [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Chao Guo
    • 1
  • Shu-Yuan Guo
    • 1
  • Zhi-Long Han
    • 1
  • Bin Li
    • 1
  • Yi Liao
    • 1
    • 2
    • 3
    • 4
  1. 1.School of PhysicsNankai UniversityTianjinChina
  2. 2.CAS Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Synergetic Innovation Center for Quantum Effects and ApplicationsHunan Normal UniversityChangshaChina
  4. 4.Center for High Energy PhysicsPeking UniversityBeijingChina

Personalised recommendations