Advertisement

Standard Model mass spectrum in inflationary universe

  • Xingang Chen
  • Yi Wang
  • Zhong-Zhi Xianyu
Open Access
Regular Article - Theoretical Physics

Abstract

We work out the Standard Model (SM) mass spectrum during inflation with quantum corrections, and explore its observable consequences in the squeezed limit of non-Gaussianity. Both non-Higgs and Higgs inflation models are studied in detail. We also illustrate how some inflationary loop diagrams can be computed neatly by Wick-rotating the inflation background to Euclidean signature and by dimensional regularization.

Keywords

Cosmology of Theories beyond the SM Effective Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    X. Chen and Y. Wang, Large non-Gaussianities with intermediate shapes from quasi-single field inflation, Phys. Rev. D 81 (2010) 063511 [arXiv:0909.0496] [INSPIRE].ADSGoogle Scholar
  2. [2]
    X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP 04 (2010) 027 [arXiv:0911.3380] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    D. Baumann and D. Green, Signatures of supersymmetry from the early universe, Phys. Rev. D 85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].ADSGoogle Scholar
  4. [4]
    V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [arXiv:1204.4207] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP 06 (2013) 051 [arXiv:1211.1624] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503.08043 [INSPIRE].
  7. [7]
    X. Chen, M.H. Namjoo and Y. Wang, Quantum primordial standard clocks, JCAP 02 (2016) 013 [arXiv:1509.03930] [INSPIRE].ADSGoogle Scholar
  8. [8]
    H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP 12 (2016) 040 [arXiv:1607.03735] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E. Sefusatti, J.R. Fergusson, X. Chen and E.P.S. Shellard, Effects and detectability of quasi-single field inflation in the large-scale structure and cosmic microwave background, JCAP 08 (2012) 033 [arXiv:1204.6318] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    J. Norena, L. Verde, G. Barenboim and C. Bosch, Prospects for constraining the shape of non-Gaussianity with the scale-dependent bias, JCAP 08 (2012) 019 [arXiv:1204.6324] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P.D. Meerburg, M. Münchmeyer, J.B. Muñoz and X. Chen, Prospects for cosmological collider physics, JCAP 03 (2017) 050 [arXiv:1610.06559] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    X. Chen and Y. Wang, Quasi-single field inflation with large mass, JCAP 09 (2012) 021 [arXiv:1205.0160] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.-O. Gong, S. Pi and M. Sasaki, Equilateral non-Gaussianity from heavy fields, JCAP 11 (2013) 043 [arXiv:1306.3691] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Kehagias and A. Riotto, High energy physics signatures from inflation and conformal symmetry of de Sitter, Fortsch. Phys. 63 (2015) 531 [arXiv:1501.03515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of massive primordial fields on large-scale structure, JCAP 02 (2016) 017 [arXiv:1504.05993] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    F. Schmidt, N.E. Chisari and C. Dvorkin, Imprint of inflation on galaxy shape correlations, JCAP 10 (2015) 032 [arXiv:1506.02671] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    R. Emami, Spectroscopy of masses and couplings during inflation, JCAP 04 (2014) 031 [arXiv:1311.0184] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    B. Bonga, S. Brahma, A.-S. Deutsch and S. Shandera, Cosmic variance in inflation with two light scalars, JCAP 05 (2016) 018 [arXiv:1512.05365] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Loop corrections to Standard Model fields in inflation, JHEP 08 (2016) 051 [arXiv:1604.07841] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    C.P. Burgess, L. Leblond, R. Holman and S. Shandera, Super-Hubble de Sitter fluctuations and the dynamical RG, JCAP 03 (2010) 033 [arXiv:0912.1608] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    F. Bezrukov, The Higgs field as an inflaton, Class. Quant. Grav. 30 (2013) 214001 [arXiv:1307.0708] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model background of the cosmological collider, arXiv:1610.06597 [INSPIRE].
  24. [24]
    E. Komatsu and D.N. Spergel, Acoustic signatures in the primary microwave background bispectrum, Phys. Rev. D 63 (2001) 063002 [astro-ph/0005036] [INSPIRE].
  25. [25]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 Results. XXIV. Constraints on primordial non-Gaussianity, Astron. Astrophys. 571 (2014) A24 [arXiv:1303.5084] [INSPIRE].
  26. [26]
    L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite, arXiv:1606.00180 [INSPIRE].
  27. [27]
    O. Doré et al., Cosmology with the SPHEREX all-sky spectral survey, arXiv:1412.4872 [INSPIRE].
  28. [28]
    LSST Science and LSST Project collaborations, P.A. Abell et al., LSST science book, version 2.0, arXiv:0912.0201 [INSPIRE].
  29. [29]
    S. Furlanetto, S.P. Oh and F. Briggs, Cosmology at low frequencies: the 21 cm transition and the high-redshift universe, Phys. Rept. 433 (2006) 181 [astro-ph/0608032] [INSPIRE].
  30. [30]
    J.R. Pritchard and A. Loeb, 21 cm cosmology, Rept. Prog. Phys. 75 (2012) 086901 [arXiv:1109.6012] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.B. Muñoz, Y. Ali-Haïmoud and M. Kamionkowski, Primordial non-Gaussianity from the bispectrum of 21 cm fluctuations in the dark ages, Phys. Rev. D 92 (2015) 083508 [arXiv:1506.04152] [INSPIRE].
  32. [32]
    M. Sasaki, J. Valiviita and D. Wands, Non-Gaussianity of the primordial perturbation in the curvaton model, Phys. Rev. D 74 (2006) 103003 [astro-ph/0607627] [INSPIRE].
  33. [33]
    P. Creminelli, On non-Gaussianities in single-field inflation, JCAP 10 (2003) 003 [astro-ph/0306122] [INSPIRE].
  34. [34]
    Y. Wang and W. Xue, Inflation and alternatives with blue tensor spectra, JCAP 10 (2014) 075 [arXiv:1403.5817] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    M. He et al., Differentiating G-inflation from string gas cosmology using the effective field theory approach, JCAP 12 (2016) 040 [arXiv:1608.05079] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    M. van der Meulen and J. Smit, Classical approximation to quantum cosmological correlations, JCAP 11 (2007) 023 [arXiv:0707.0842] [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    A. Higuchi, D. Marolf and I.A. Morrison, On the equivalence between Euclidean and in-in formalisms in de Sitter QFT, Phys. Rev. D 83 (2011) 084029 [arXiv:1012.3415] [INSPIRE].ADSGoogle Scholar
  38. [38]
    A. Rajaraman, On the proper treatment of massless fields in Euclidean de Sitter space, Phys. Rev. D 82 (2010) 123522 [arXiv:1008.1271] [INSPIRE].ADSGoogle Scholar
  39. [39]
    D. López Nacir, F.D. Mazzitelli and L.G. Trombetta, O(N ) model in Euclidean de Sitter space: beyond the leading infrared approximation, JHEP 09 (2016) 117 [arXiv:1606.03481] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of effective potentials, Phys. Rev. D 91 (2015) 016009 [arXiv:1408.0287] [INSPIRE].ADSGoogle Scholar
  41. [41]
    A. Andreassen, W. Frost and M.D. Schwartz, Consistent use of the Standard Model effective potential, Phys. Rev. Lett. 113 (2014) 241801 [arXiv:1408.0292] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Hook, J. Kearney, B. Shakya and K.M. Zurek, Probable or improbable universe? Correlating electroweak vacuum instability with the scale of inflation, JHEP 01 (2015) 061 [arXiv:1404.5953] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and the Higgs stability during inflation, Phys. Rev. Lett. 113 (2014) 211102 [arXiv:1407.3141] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J. Kearney, H. Yoo and K.M. Zurek, Is a Higgs vacuum instability fatal for high-scale inflation?, Phys. Rev. D 91 (2015) 123537 [arXiv:1503.05193] [INSPIRE].ADSGoogle Scholar
  45. [45]
    J.R. Espinosa et al., The cosmological Higgstory of the vacuum instability, JHEP 09 (2015) 174 [arXiv:1505.04825] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    K. Allison, Higgs ξ-inflation for the 125-126 GeV Higgs: a two-loop analysis, JHEP 02 (2014) 040 [arXiv:1306.6931] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A.V. Bednyakov, A.F. Pikelner and V.N. Velizhanin, Three-loop SM β-functions for matrix Yukawa couplings, Phys. Lett. B 737 (2014) 129 [arXiv:1406.7171] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  48. [48]
    G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    P. Candelas and D.J. Raine, General relativistic quantum field theory — an exactly soluble model, Phys. Rev. D 12 (1975) 965 [INSPIRE].ADSGoogle Scholar
  50. [50]
    B. Allen and C.A. Lütken, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys. 106 (1986) 201 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    S.-P. Miao and R.P. Woodard, Leading log solution for inflationary Yukawa, Phys. Rev. D 74 (2006) 044019 [gr-qc/0602110] [INSPIRE].
  52. [52]
    J.F. Koksma and T. Prokopec, Fermion propagator in cosmological spaces with constant deceleration, Class. Quant. Grav. 26 (2009) 125003 [arXiv:0901.4674] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    S.P. Miao, Quantum gravitational effects on massive fermions during inflation I, Phys. Rev. D 86 (2012) 104051 [arXiv:1207.5241] [INSPIRE].ADSGoogle Scholar
  54. [54]
    X. Chen, Primordial non-Gaussianities from inflation models, Adv. Astron. 2010 (2010) 638979 [arXiv:1002.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Y. Wang, Inflation, cosmic perturbations and non-Gaussianities, Commun. Theor. Phys. 62 (2014) 109 [arXiv:1303.1523] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    J. Gleyzes, R. de Putter, D. Green and O. Doré, Biasing and the search for primordial non-Gaussianity beyond the local type, arXiv:1612.06366 [INSPIRE].
  57. [57]
    F. Bezrukov, J. Rubio and M. Shaposhnikov, Living beyond the edge: Higgs inflation and vacuum metastability, Phys. Rev. D 92 (2015) 083512 [arXiv:1412.3811] [INSPIRE].ADSGoogle Scholar
  58. [58]
    H.-J. He and Z.-Z. Xianyu, Extending Higgs inflation with TeV scale new physics, JCAP 10 (2014) 019 [arXiv:1405.7331] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    Z.-Z. Xianyu and H.-J. He, Asymptotically safe Higgs inflation, JCAP 10 (2014) 083 [arXiv:1407.6993] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    J. Ellis, H.-J. He and Z.-Z. Xianyu, New Higgs inflation in a no-scale supersymmetric SU (5) GUT, Phys. Rev. D 91 (2015) 021302 [arXiv:1411.5537] [INSPIRE].ADSMathSciNetGoogle Scholar
  61. [61]
    S.-F. Ge, H.-J. He, J. Ren and Z.-Z. Xianyu, Realizing dark matter and Higgs inflation in light of LHC diphoton excess, Phys. Lett. B 757 (2016) 480 [arXiv:1602.01801] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  62. [62]
    J. Ellis, H.-J. He and Z.-Z. Xianyu, Higgs inflation, reheating and gravitino production in no-scale supersymmetric GUTs, JCAP 08 (2016) 068 [arXiv:1606.02202] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    Y. Hamada, H. Kawai, K.-Y. Oda and S.C. Park, Higgs inflation from Standard Model criticality, Phys. Rev. D 91 (2015) 053008 [arXiv:1408.4864] [INSPIRE].ADSGoogle Scholar
  64. [64]
    Y. Hamada, H. Kawai and K.-Y. Oda, Predictions on mass of Higgs portal scalar dark matter from Higgs inflation and flat potential, JHEP 07 (2014) 026 [arXiv:1404.6141] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    J. Rubio and M. Shaposhnikov, Higgs-dilaton cosmology: universality versus criticality, Phys. Rev. D 90 (2014) 027307 [arXiv:1406.5182] [INSPIRE].ADSGoogle Scholar
  66. [66]
    J. Ren, Z.-Z. Xianyu and H.-J. He, Higgs gravitational interaction, weak boson scattering and Higgs inflation in Jordan and Einstein frames, JCAP 06 (2014) 032 [arXiv:1404.4627] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    Z.-Z. Xianyu, J. Ren and H.-J. He, Gravitational interaction of Higgs boson and weak boson scattering, Phys. Rev. D 88 (2013) 096013 [arXiv:1305.0251] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Spradlin, A. Strominger and A. Volovich, Les Houches lectures on de Sitter space, hep-th/0110007 [INSPIRE].
  69. [69]
    D. Anninos, De Sitter musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  70. [70]
    J.L. Synge, Relativity: the general theory, North-Holland, Amsterdam The Netherlands, (1960) [INSPIRE].
  71. [71]
    B. Allen and T. Jacobson, Vector two point functions in maximally symmetric spaces, Commun. Math. Phys. 103 (1986) 669 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  72. [72]
    A. Higuchi, Symmetric tensor spherical harmonics on the N sphere and their application to the de Sitter group SO(N, 1), J. Math. Phys. 28 (1987) 1553 [Erratum ibid. 43 (2002) 6385] [INSPIRE].
  73. [73]
    D. Marolf and I.A. Morrison, The IR stability of de Sitter: loop corrections to scalar propagators, Phys. Rev. D 82 (2010) 105032 [arXiv:1006.0035] [INSPIRE].ADSGoogle Scholar
  74. [74]
    I.T. Drummond and G.M. Shore, Dimensional regularization of massless quantum electrodynamics in spherical space-time. 1, Annals Phys. 117 (1979) 89 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute for Theory and ComputationHarvard-Smithsonian Center for AstrophysicsCambridgeU.S.A.
  2. 2.Department of PhysicsThe Hong Kong University of Science and TechnologyKowloonP.R. China
  3. 3.Center of Mathematical Sciences and ApplicationsHarvard UniversityCambridgeU.S.A.

Personalised recommendations