Advertisement

The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields

  • Thomas Basile
  • Roberto BonezziEmail author
  • Nicolas Boulanger
Open Access
Regular Article - Theoretical Physics

Abstract

A first-order differential equation is provided for a one-form, spin-s connection valued in the two-row, width-(s − 1) Young tableau of GL(5). The connection is glued to a zero-form identified with the spin-s Cotton tensor. The usual zero-Cotton equation for a symmetric, conformal spin-s tensor gauge field in 3D is the flatness condition for the sum of the GL(5) spin-s and background connections. This presentation of the equations allows to reformulate in a compact way the cohomological problem studied in arXiv:1511.07389, featuring the spin-s Schouten tensor. We provide full computational details for spin 3 and 4 and present the general spin-s case in a compact way.

Keywords

Conformal and W Symmetry Field Theories in Lower Dimensions Higher Spin Gravity Higher Spin Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E.S. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    W. Siegel, All Free Conformal Representations in All Dimensions, Int. J. Mod. Phys. A 4 (1989) 2015 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    C.N. Pope and P.K. Townsend, Conformal Higher Spin in (2+1)-dimensions, Phys. Lett. B 225 (1989) 245 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    E.S. Fradkin and V. Ya. Linetsky, A Superconformal Theory of Massless Higher Spin Fields in D = (2+1), Mod. Phys. Lett. A 4 (1989) 731 [INSPIRE].
  5. [5]
    R.R. Metsaev, All conformal invariant representations of d-dimensional anti-de Sitter group, Mod. Phys. Lett. A 10 (1995) 1719 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C.R. Preitschopf and M.A. Vasiliev, Conformal field theory in conformal space, Nucl. Phys. B 549 (1999) 450 [hep-th/9812113] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    O.V. Shaynkman and M.A. Vasiliev, Higher spin conformal symmetry for matter fields in (2 + 1)-dimensions, Theor. Math. Phys. 128 (2001) 1155 [Teor. Mat. Fiz. 128 (2001) 378] [hep-th/0103208] [INSPIRE].
  8. [8]
    A.Y. Segal, Conformal higher spin theory, Nucl. Phys. B 664 (2003) 59 [hep-th/0207212] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    O.V. Shaynkman, I. Yu. Tipunin and M.A. Vasiliev, Unfolded form of conformal equations in M dimensions and o(M + 2) modules, Rev. Math. Phys. 18 (2006) 823 [hep-th/0401086] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R.R. Metsaev, Ordinary-derivative formulation of conformal totally symmetric arbitrary spin bosonic fields, JHEP 06 (2012) 062 [arXiv:0709.4392] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    R. Marnelius, Lagrangian conformal higher spin theory, arXiv:0805.4686 [INSPIRE].
  12. [12]
    M.A. Vasiliev, Bosonic conformal higher-spin fields of any symmetry, Nucl. Phys. B 829 (2010) 176 [arXiv:0909.5226] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    I.A. Bandos, J.A. de Azcarraga and C. Meliveo, Extended supersymmetry in massless conformal higher spin theory, Nucl. Phys. B 853 (2011) 760 [arXiv:1106.5199] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    X. Bekaert and M. Grigoriev, Notes on the ambient approach to boundary values of AdS gauge fields, J. Phys. A 46 (2013) 214008 [arXiv:1207.3439] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  15. [15]
    M. Beccaria, X. Bekaert and A.A. Tseytlin, Partition function of free conformal higher spin theory, JHEP 08 (2014) 113 [arXiv:1406.3542] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    O.V. Shaynkman, Bosonic Fradkin-Tseytlin equations unfolded, JHEP 12 (2016) 118 [arXiv:1412.7743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G. Barnich, X. Bekaert and M. Grigoriev, Notes on conformal invariance of gauge fields, J. Phys. A 48 (2015) 505402 [arXiv:1506.00595] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  18. [18]
    B.E.W. Nilsson, On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field, JHEP 08 (2016) 142 [arXiv:1506.03328] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    S. Fernando and M. Günaydin, Massless conformal fields, AdS d+1 /CF T d higher spin algebras and their deformations, Nucl. Phys. B 904 (2016) 494 [arXiv:1511.02167] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Henneaux, S. Hörtner and A. Leonard, Higher Spin Conformal Geometry in Three Dimensions and Prepotentials for Higher Spin Gauge Fields, JHEP 01 (2016) 073 [arXiv:1511.07389] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    P. Haehnel and T. McLoughlin, Conformal Higher Spin Theory and Twistor Space Actions, arXiv:1604.08209 [INSPIRE].
  22. [22]
    M. Beccaria, S. Nakach and A.A. Tseytlin, On triviality of S-matrix in conformal higher spin theory, JHEP 09 (2016) 034 [arXiv:1607.06379] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    M. Grigoriev and A.A. Tseytlin, On conformal higher spins in curved background, J. Phys. A 50 (2017) 125401 [arXiv:1609.09381] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    R.R. Metsaev, Interacting light-cone gauge conformal fields, arXiv:1612.06348 [INSPIRE].
  25. [25]
    M. Henneaux, S. Hörtner and A. Leonard, Twisted self-duality for higher spin gauge fields and prepotentials, Phys. Rev. D 94 (2016) 105027 [arXiv:1609.04461] [INSPIRE].ADSGoogle Scholar
  26. [26]
    E.A. Bergshoeff, O. Hohm and P.K. Townsend, On Higher Derivatives in 3D Gravity and Higher Spin Gauge Theories, Annals Phys. 325 (2010) 1118 [arXiv:0911.3061] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    B.E.W. Nilsson, Towards an exact frame formulation of conformal higher spins in three dimensions, JHEP 09 (2015) 078 [arXiv:1312.5883] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  28. [28]
    S.M. Kuzenko, Higher spin super-Cotton tensors and generalisations of the linear-chiral duality in three dimensions, Phys. Lett. B 763 (2016) 308 [arXiv:1606.08624] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M.A. Vasiliev, Unfolded representation for relativistic equations in (2 + 1) anti-de Sitter space, Class. Quant. Grav. 11 (1994) 649 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    O.V. Shaynkman and M.A. Vasiliev, Scalar field in any dimension from the higher spin gauge theory perspective, Theor. Math. Phys. 123 (2000) 683 [Teor. Mat. Fiz. 123 (2000) 323] [hep-th/0003123] [INSPIRE].
  31. [31]
    E.D. Skvortsov, Mixed-Symmetry Massless Fields in Minkowski space Unfolded, JHEP 07 (2008) 004 [arXiv:0801.2268] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    N. Boulanger, C. Iazeolla and P. Sundell, Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism, JHEP 07 (2009) 013 [arXiv:0812.3615] [INSPIRE].
  33. [33]
    N. Boulanger, D. Ponomarev, E. Sezgin and P. Sundell, New unfolded higher spin systems in AdS 3, Class. Quant. Grav. 32 (2015) 155002 [arXiv:1412.8209] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    Yu. M. Zinoviev, Massive higher spins in D = 3 unfolded, J. Phys. A 49 (2016) 095401 [arXiv:1509.00968] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  35. [35]
    I.L. Buchbinder, T.V. Snegirev and Yu. M. Zinoviev, Unfolded equations for massive higher spin supermultiplets in AdS 3, JHEP 08 (2016) 075 [arXiv:1606.02475] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D.S. Ponomarev and M.A. Vasiliev, Frame-Like Action and Unfolded Formulation for Massive Higher-Spin Fields, Nucl. Phys. B 839 (2010) 466 [arXiv:1001.0062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    T. Nutma and M. Taronna, On conformal higher spin wave operators, JHEP 06 (2014) 066 [arXiv:1404.7452] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    J. François, S. Lazzarini and T. Masson, Becchi-Rouet-Stora-Tyutin structure for the mixed Weyl-diffeomorphism residual symmetry, J. Math. Phys. 57 (2016) 033504 [arXiv:1508.07666] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [INSPIRE].
  40. [40]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  41. [41]
    V.E. Didenko and E.D. Skvortsov, Elements of Vasiliev theory, arXiv:1401.2975 [INSPIRE].
  42. [42]
    Y. Yin, Extensions of Three-Dimensional Higher-Derivative Gravity, Ph.D. Thesis, University of Groningen, Groningen The Netherlands (2013).Google Scholar
  43. [43]
    J.H. Horne and E. Witten, Conformal Gravity in Three-dimensions as a Gauge Theory, Phys. Rev. Lett. 62 (1989) 501 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    V.E. Lopatin and M.A. Vasiliev, Free Massless Bosonic Fields of Arbitrary Spin in d-dimensional de Sitter Space, Mod. Phys. Lett. A 3 (1988) 257 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Thomas Basile
    • 1
    • 2
  • Roberto Bonezzi
    • 1
    Email author
  • Nicolas Boulanger
    • 1
  1. 1.Group of Mechanics and Gravitation, Physique théorique et mathématiqueUniversity of Mons - UMONSMonsBelgium
  2. 2.Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRSFédération de Recherche 2964 Denis Poisson, Université François RabelaisToursFrance

Personalised recommendations