Advertisement

Exact renormalization of the photino mass in softly broken \( \mathcal{N} \) = 1 SQED with N f flavors regularized by higher derivatives

  • I. V. Nartsev
  • K. V. StepanyantzEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We consider the softly broken \( \mathcal{N} \) = 1 supersymmetric electrodynamics, regularized by higher derivatives. For this theory we demonstrate that the renormalization of the photino mass is determined by integrals of double total derivatives in the momentum space in all orders. Consequently, it is possible to derive the NSVZ-like exact relation between the photino mass anomalous dimension and the anomalous dimension of the matter superfields in the rigid theory by direct summation of supergraphs. It is important that both these renormalization group functions are defined in terms of the bare coupling constant, so that the considered NSVZ-like relation is valid independently of the subtraction scheme in the case of using the higher derivative regularization. The factorization of integrals defining the photino mass renormalization into integrals of double total derivatives is verified by an explicit two-loop calculation.

Keywords

Renormalization Regularization and Renormalons Supersymmetric Gauge Theory Renormalization Group 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus, Nucl. Phys. B 229 (1983) 381 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    D.R.T. Jones, More on the axial anomaly in supersymmetric Yang-Mills theory, Phys. Lett. B 123 (1983) 45 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, β-function in supersymmetric gauge theories: instantons versus traditional approach, Phys. Lett. 166B (1986) 329 [Sov. J. Nucl. Phys. 43 (1986) 294] [Yad. Fiz. 43 (1986) 459] [INSPIRE].
  4. [4]
    M.A. Shifman and A.I. Vainshtein, Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion, Nucl. Phys. B 277 (1986) 456 [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Hisano and M.A. Shifman, Exact results for soft supersymmetry breaking parameters in supersymmetric gauge theories, Phys. Rev. D 56 (1997) 5475 [hep-ph/9705417] [INSPIRE].
  6. [6]
    I. Jack and D.R.T. Jones, The gaugino β-function, Phys. Lett. B 415 (1997) 383 [hep-ph/9709364] [INSPIRE].
  7. [7]
    L.V. Avdeev, D.I. Kazakov and I.N. Kondrashuk, Renormalizations in softly broken SUSY gauge theories, Nucl. Phys. B 510 (1998) 289 [hep-ph/9709397] [INSPIRE].
  8. [8]
    A.I. Vainshtein, V.I. Zakharov and M.A. Shifman, Gell-Mann-Low function in supersymmetric electrodynamics, JETP Lett. 42 (1985) 224 [Pisma Zh. Eksp. Teor. Fiz. 42 (1985) 182] [INSPIRE].
  9. [9]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, EXACT Gell-Mann-Low function in supersymmetric electrodynamics, Phys. Lett. B 166 (1986) 334 [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].
  11. [11]
    H. Terao, Renormalization group for soft SUSY breaking parameters and MSSM coupled with superconformal field theories, hep-ph/0112021 [INSPIRE].
  12. [12]
    D.I. Kazakov, Renormalization properties of softly broken SUSY gauge theories, hep-ph/0208200 [INSPIRE].
  13. [13]
    M.A. Shifman and A.I. Vainshtein, Instantons versus supersymmetry: Fifteen years later, in ITEP lectures on particle physics and field theory, volume 2, M.A. Shifman ed., World Scientific, Singapore (1999), hep-th/9902018 [INSPIRE].
  14. [14]
    N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    E. Kraus, C. Rupp and K. Sibold, Supersymmetric Yang-Mills theories with local coupling: the supersymmetric gauge, Nucl. Phys. B 661 (2003) 83 [hep-th/0212064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A.L. Kataev and K.V. Stepanyantz, Scheme independent consequence of the NSVZ relation for N = 1 SQED with N f flavors, Phys. Lett. B 730 (2014) 184 [arXiv:1311.0589] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A.L. Kataev and K.V. Stepanyantz, The NSVZ β-function in supersymmetric theories with different regularizations and renormalization prescriptions, Theor. Math. Phys. 181 (2014) 1531 [arXiv:1405.7598] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    I. Jack, D.R.T. Jones and C.G. North, N = 1 supersymmetry and the three loop gauge β-function, Phys. Lett. B 386 (1996) 138 [hep-ph/9606323] [INSPIRE].
  19. [19]
    I. Jack, D.R.T. Jones and C.G. North, Scheme dependence and the NSVZ β-function, Nucl. Phys. B 486 (1997) 479 [hep-ph/9609325] [INSPIRE].
  20. [20]
    I. Jack, D.R.T. Jones and A. Pickering, The connection between DRED and NSVZ, Phys. Lett. B 435 (1998) 61 [hep-ph/9805482] [INSPIRE].
  21. [21]
    A.L. Kataev and K.V. Stepanyantz, NSVZ scheme with the higher derivative regularization for \( \mathcal{N} \) = 1 SQED, Nucl. Phys. B 875 (2013) 459 [arXiv:1305.7094] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    A.A. Slavnov, Invariant regularization of nonlinear chiral theories, Nucl. Phys. B 31 (1971) 301 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A.A. Slavnov, Invariant regularization of gauge theories, Theor. Math. Phys. 13 (1972) 1064 [Teor. Mat. Fiz. 13 (1972) 174] [INSPIRE].
  24. [24]
    A.A. Slavnov, The Pauli-Villars regularization for nonabelian gauge theories, Theor. Math. Phys. 33 (1977) 977 [Teor. Mat. Fiz. 33 (1977) 210] [INSPIRE].
  25. [25]
    W. Siegel, Supersymmetric dimensional regularization via dimensional reduction, Phys. Lett. B 84 (1979) 193 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    W. Siegel, Inconsistency of supersymmetric dimensional regularization, Phys. Lett. B 94 (1980) 37 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    V.K. Krivoshchekov, Invariant regularizations for supersymmetric gauge theories, Theor. Math. Phys. 36 (1978) 745 [Teor. Mat. Fiz. 36 (1978) 291] [INSPIRE].
  28. [28]
    P.C. West, Higher derivative regulation of supersymmetric theories, Nucl. Phys. B 268 (1986) 113 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    V.K. Krivoshchekov, Invariant regularization for N = 2 superfield perturbation theory, Phys. Lett. B 149 (1984) 128 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    I.L. Buchbinder and K.V. Stepanyantz, The higher derivative regularization and quantum corrections in N = 2 supersymmetric theories, Nucl. Phys. B 883 (2014) 20 [arXiv:1402.5309] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    I.L. Buchbinder, N.G. Pletnev and K.V. Stepanyantz, Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories, Phys. Lett. B 751 (2015) 434 [arXiv:1509.08055] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED, regularized by higher derivatives, by direct summation of Feynman diagrams, Nucl. Phys. B 852 (2011) 71 [arXiv:1102.3772] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    K.V. Stepanyantz, The NSVZ β-function and the Schwinger-Dyson equations for \( \mathcal{N} \) = 1 SQED with N f flavors, regularized by higher derivatives, JHEP 08 (2014) 096 [arXiv:1404.6717] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A.A. Soloshenko and K.V. Stepanyantz, Three loop β-function for N = 1 supersymmetric electrodynamics, regularized by higher derivatives, Theor. Math. Phys. 140 (2004) 1264 [hep-th/0304083] [INSPIRE].CrossRefzbMATHGoogle Scholar
  35. [35]
    A.V. Smilga and A. Vainshtein, Background field calculations and nonrenormalization theorems in 4D supersymmetric gauge theories and their low-dimensional descendants, Nucl. Phys. B 704 (2005) 445 [hep-th/0405142] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    A.E. Kazantsev and K.V. Stepanyantz, Relation between two-point Green’s functions of \( \mathcal{N} \) =1 SQED with N f flavors, regularized by higher derivatives, in the three-loop approximation, J. Exp. Theor. Phys. 120 (2015) 618 [arXiv:1410.1133] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A.B. Pimenov, E.S. Shevtsova and K.V. Stepanyantz, Calculation of two-loop β-function for general N = 1 supersymmetric Yang-Mills theory with the higher covariant derivative regularization, Phys. Lett. B 686 (2010) 293 [arXiv:0912.5191] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    K.V. Stepanyantz, Higher covariant derivative regularization for calculations in supersymmetric theories, Proc. Stekov. Inst. Math. 272 (2011) 256.CrossRefGoogle Scholar
  39. [39]
    K.V. Stepanyantz, Factorization of integrals defining the two-loop β-function for the general renormalizable N = 1 SYM theory, regularized by the higher covariant derivatives, into integrals of double total derivatives, arXiv:1108.1491 [INSPIRE].
  40. [40]
    K.V. Stepanyantz, Derivation of the exact NSVZ β-function in N = 1 SQED regularized by higher derivatives by summation of Feynman diagrams, J. Phys. Conf. Ser. 343 (2012) 012115 [INSPIRE].CrossRefGoogle Scholar
  41. [41]
    K.V. Stepanyantz, Multiloop calculations in supersymmetric theories with the higher covariant derivative regularization, J. Phys. Conf. Ser. 368 (2012) 012052 [arXiv:1203.5525] [INSPIRE].CrossRefGoogle Scholar
  42. [42]
    S.S. Aleshin, A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, One-loop divergences in non-Abelian supersymmetric theories regularized by BRST-invariant version of the higher derivative regularization, JHEP 05 (2016) 014 [arXiv:1603.04347] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    N.N. Bogolyubov and D.V. Shirkov, Introduction to the theory of quantized fields, Intersci. Monogr. Phys. Astron. 3 (1959) 1 [INSPIRE].zbMATHGoogle Scholar
  44. [44]
    K.V. Stepanyantz, Non-renormalization of the \( V\;\overline{c}c \) -vertices in \( \mathcal{N} \) = 1 supersymmetric theories, Nucl. Phys. B 909 (2016) 316 [arXiv:1603.04801] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S.S. Aleshin, A.L. Kataev and K.V. Stepanyantz, Structure of three-loop contributions to the β-function of \( \mathcal{N} \) = 1 supersymmetric QED with N f flavors regularized by the dimensional reduction, JETP Lett. 103 (2016) 77 [arXiv:1511.05675] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    R.V. Harlander, D.R.T. Jones, P. Kant, L. Mihaila and M. Steinhauser, Four-loop β-function and mass anomalous dimension in dimensional reduction, JHEP 12 (2006) 024 [hep-ph/0610206] [INSPIRE].
  47. [47]
    L. Mihaila, Precision calculations in supersymmetric theories, Adv. High Energy Phys. 2013 (2013) 607807 [arXiv:1310.6178] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    I. Jack, D.R.T. Jones and A. Pickering, Renormalization invariance and the soft β-functions, Phys. Lett. B 426 (1998) 73 [hep-ph/9712542] [INSPIRE].
  49. [49]
    I. Jack, D.R.T. Jones and A. Pickering, The soft scalar mass β-function, Phys. Lett. B 432 (1998) 114 [hep-ph/9803405] [INSPIRE].
  50. [50]
    I. Jack and D.R.T. Jones, RG invariant solutions for the soft supersymmetry breaking parameters, Phys. Lett. B 465 (1999) 148 [hep-ph/9907255] [INSPIRE].
  51. [51]
    S.L. Adler, Some simple vacuum polarization phenomenology: e + e hadrons: the μ-mesic atom x-ray discrepancy and (g − 2) of the muon, Phys. Rev. D 10 (1974) 3714 [INSPIRE].ADSGoogle Scholar
  52. [52]
    M. Shifman and K. Stepanyantz, Exact Adler function in supersymmetric QCD, Phys. Rev. Lett. 114 (2015) 051601 [arXiv:1412.3382] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    M. Shifman and K.V. Stepanyantz, Derivation of the exact expression for the D function in N =1 SQCD, Phys. Rev. D 91 (2015) 105008 [arXiv:1502.06655] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    M.T. Grisaru, W. Siegel and M. Roček, Improved methods for supergraphs, Nucl. Phys. B 159 (1979) 429 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    Y. Yamada, Two loop renormalization group equations for soft SUSY breaking scalar interactions: Supergraph method, Phys. Rev. D 50 (1994) 3537 [hep-ph/9401241] [INSPIRE].
  56. [56]
    J.A. Helayel-Neto, Superpropagators for explicitly broken supersymmetric theories, Phys. Lett. B 135 (1984) 78 [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    F. Feruglio, J.A. Helayel-Neto and F. Legovini, Supergraphs extended to broken supersymmetries, Nucl. Phys. B 249 (1985) 533 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. Scholl, Superfield propagators and supergraphs for broken supersymmetry, Z. Phys. C 28 (1985) 545 [INSPIRE].ADSGoogle Scholar
  59. [59]
    L.D. Faddeev and A.A. Slavnov, Gauge fields. Introduction to quantum theory, Front. Phys. 50 (1980) 1 [Front. Phys. 83 (1990) 1] [INSPIRE].
  60. [60]
    D. Kutasov and A. Schwimmer, Lagrange multipliers and couplings in supersymmetric field theory, Nucl. Phys. B 702 (2004) 369 [hep-th/0409029] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    M.A. Luty and R. Rattazzi, Soft supersymmetry breaking in deformed moduli spaces, conformal theories and N = 2 Yang-Mills theory, JHEP 11 (1999) 001 [hep-th/9908085] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  62. [62]
    V. A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Supersymmetric extension of the Adler-Bardeen theorem, Phys. Lett. 157B (1985) 169.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Moscow State University, Faculty of Physics, Department of Theoretical PhysicsMoscowRussia

Personalised recommendations