Instanton operators and the Higgs branch at infinite coupling

  • Stefano Cremonesi
  • Giulia FerlitoEmail author
  • Amihay Hanany
  • Noppadol Mekareeya
Open Access
Regular Article - Theoretical Physics


The richness of 5d \( \mathcal{N}=1 \) theories with a UV fixed point at infinite coupling is due to the existence of local disorder operators known as instanton operators. By considering the Higgs branch of SU(2) gauge theories with N f ≤ 7 flavours at finite and infinite coupling, we write down the explicit chiral ring relations between instanton operators, the glueball superfield and mesons. Exciting phenomena appear at infinite coupling: the glueball superfield is no longer nilpotent and the classical chiral ring relations are quantum corrected by instanton operators bilinears. We also find expressions for the dressing of instanton operators of arbitrary charge. The same analysis is performed for USp(2k) with an antisymmetric hypermultiplet and pure SU(N) gauge theories.


Nonperturbative Effects Solitons Monopoles and Instantons Supersymmetric Gauge Theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M.R. Douglas, S.H. Katz and C. Vafa, Small instantons, Del Pezzo surfaces and type-I-prime theory, Nucl. Phys. B 497 (1997) 155 [hep-th/9609071] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56 [hep-th/9702198] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl. Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    O. DeWolfe, A. Hanany, A. Iqbal and E. Katz, Five-branes, seven-branes and five-dimensional E(n) field theories, JHEP 03 (1999) 006 [hep-th/9902179] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H.-C. Kim, S.-S. Kim and K. Lee, 5-dim superconformal index with enhanced en global symmetry, JHEP 10 (2012) 142 [arXiv:1206.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Rodríguez-Gómez and G. Zafrir, On the 5D instanton index as a Hilbert series, Nucl. Phys. B 878 (2014) 1 [arXiv:1305.5684] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5D superconformal indices at large-N and holography, JHEP 08 (2013) 081 [arXiv:1305.6870] [INSPIRE].
  11. [11]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, Discrete θ and the 5d superconformal index, JHEP 01 (2014) 079 [arXiv:1310.2150] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Taki, Notes on enhancement of flavor symmetry and 5D superconformal index, arXiv:1310.7509 [INSPIRE].
  13. [13]
    O. Bergman, D. Rodríguez-Gómez and G. Zafrir, 5-brane webs, symmetry enhancement and duality in 5D supersymmetric gauge theory, JHEP 03 (2014) 112 [arXiv:1311.4199] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    C. Hwang, J. Kim, S. Kim and J. Park, General instanton counting and 5d SCFT, JHEP 07 (2015) 063 [arXiv:1406.6793] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    G. Zafrir, Duality and enhancement of symmetry in 5D gauge theories, JHEP 12 (2014) 116 [arXiv:1408.4040] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    O. Bergman and G. Zafrir, Lifting 4d dualities to 5d, JHEP 04 (2015) 141 [arXiv:1410.2806] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    G. Zafrir, Instanton operators and symmetry enhancement in 5d supersymmetric USp, SO and exceptional gauge theories, JHEP 07 (2015) 087 [arXiv:1503.08136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    H. Hayashi, S.-S. Kim, K. Lee, M. Taki and F. Yagi, A new 5d description of 6d D-type minimal conformal matter, JHEP 08 (2015) 097 [arXiv:1505.04439] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    K. Yonekura, Instanton operators and symmetry enhancement in 5d supersymmetric quiver gauge theories, JHEP 07 (2015) 167 [arXiv:1505.04743] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    L. Bao, E. Pomoni, M. Taki and F. Yagi, M 5-branes, toric diagrams and gauge theory duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D. Bashkirov, A comment on the enhancement of global symmetries in superconformal SU(2) gauge theories in 5D, arXiv:1211.4886 [INSPIRE].
  22. [22]
    A. Iqbal and C. Vafa, BPS degeneracies and superconformal index in diverse dimensions, Phys. Rev. D 90 (2014) 105031 [arXiv:1210.3605] [INSPIRE].ADSGoogle Scholar
  23. [23]
    L. Bao, V. Mitev, E. Pomoni, M. Taki and F. Yagi, Non-lagrangian theories from brane junctions, JHEP 01 (2014) 175 [arXiv:1310.3841] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    H. Hayashi, H.-C. Kim and T. Nishinaka, Topological strings and 5d T N partition functions, JHEP 06 (2014) 014 [arXiv:1310.3854] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    H. Hayashi and G. Zoccarato, Exact partition functions of Higgsed 5d T N theories, JHEP 01 (2015) 093 [arXiv:1409.0571] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    V. Mitev, E. Pomoni, M. Taki and F. Yagi, Fiber-base duality and global symmetry enhancement, JHEP 04 (2015) 052 [arXiv:1411.2450] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S.-S. Kim and F. Yagi, 5d E n Seiberg-Witten curve via toric-like diagram, JHEP 06 (2015) 082 [arXiv:1411.7903] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    H. Hayashi and G. Zoccarato, Topological vertex for Higgsed 5d T N theories, JHEP 09 (2015) 023 [arXiv:1505.00260] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, Instanton operators in five-dimensional gauge theories, JHEP 03 (2015) 019 [arXiv:1412.2789] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    D. Rodriguez-Gomez and J. Schmude, Supersymmetrizing 5d instanton operators, JHEP 03 (2015) 114 [arXiv:1501.00927] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  31. [31]
    Y. Tachikawa, Instanton operators and symmetry enhancement in 5d supersymmetric gauge theories, PTEP 2015 (2015) 043B06 [arXiv:1501.01031] [INSPIRE].
  32. [32]
    M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011 [arXiv:1012.2880] [INSPIRE].ADSzbMATHGoogle Scholar
  33. [33]
    N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M 5-branes, D4-branes and quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    P.B. Kronheimer, Instantons and the geometry of the nilpotent variety, J. Diff. Geom. 32 (1990) 473.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [35]
    A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Ann. Sci. de École Norm. Sup. 9 (1976) 1.MathSciNetCrossRefzbMATHGoogle Scholar
  36. [36]
    F. Cachazo, M.R. Douglas, N. Seiberg and E. Witten, Chiral rings and anomalies in supersymmetric gauge theory, JHEP 12 (2002) 071 [hep-th/0211170] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    R. Argurio, G. Ferretti and R. Heise, An introduction to supersymmetric gauge theories and matrix models, Int. J. Mod. Phys. A 19 (2004) 2015 [hep-th/0311066] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    A. Hanany and C. Romelsberger, Counting BPS operators in the chiral ring of N = 2 supersymmetric gauge theories or N = 2 braine surgery, Adv. Theor. Math. Phys. 11 (2007) 1091 [hep-th/0611346] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    S. Benvenuti, A. Hanany and N. Mekareeya, The Hilbert series of the one instanton moduli space, JHEP 06 (2010) 100 [arXiv:1005.3026] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    A. Hanany and R. Kalveks, Highest weight generating functions for Hilbert series, JHEP 10 (2014) 152 [arXiv:1408.4690] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N}=4 \) gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    A. Hanany, C. Hwang, H. Kim, J. Park and R.-K. Seong, Hilbert series for theories with Aharony duals, JHEP 11 (2015) 132 [arXiv:1505.02160] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    S. Cremonesi, The Hilbert series of 3d N = = 2 Yang-Mills theories with vectorlike matter, J. Phys. A 48 (2015) 455401 [arXiv:1505.02409] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  44. [44]
    A. Hanany, N. Mekareeya and S.S. Razamat, Hilbert series for moduli spaces of two instantons, JHEP 01 (2013) 070 [arXiv:1205.4741] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    S. Cremonesi, G. Ferlito, A. Hanany and N. Mekareeya, Coulomb branch and the moduli space of instantons, JHEP 12 (2014) 103 [arXiv:1408.6835] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories: quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • Stefano Cremonesi
    • 1
  • Giulia Ferlito
    • 3
    Email author
  • Amihay Hanany
    • 2
  • Noppadol Mekareeya
    • 3
  1. 1.Department of MathematicsKing’s College LondonLondonU.K.
  2. 2.Theoretical Physics Group, Imperial College LondonLondonU.K.
  3. 3.Theory Division, Physics Department, CERNGeneva 23Switzerland

Personalised recommendations