Skip to main content

Higgs production from sterile neutrinos at future lepton colliders

A preprint version of the article is available at arXiv.

Abstract

In scenarios with sterile (right-handed) neutrinos that are subject to an approximate “lepton-number-like” symmetry, the heavy neutrinos (i.e. the mass eigenstates) can have masses around the electroweak scale and couple to the Higgs boson with, in principle, unsuppressed Yukawa couplings while accounting for the smallness of the light neutrinos’ masses. In these scenarios, the on-shell production of heavy neutrinos and their subsequent decays into a light neutrino and a Higgs boson constitutes a hitherto unstudied resonant contribution to the Higgs production mechanism. We investigate the relevance of this resonant mono-Higgs production mechanism in leptonic collisions, including thepresent experimental constraints on the neutrino Yukawa couplings, and we determine the sensitivity of future lepton colliders to the heavy neutrinos. With Monte Carlo event sampling and a simulation of the detector response we find that, at future lepton colliders, neutrino Yukawa couplings below the percent level can lead to observable deviations from the SM and, furthermore, the sensitivity improves with higher center-of-mass energies (for identical integrated luminosities).

References

  1. [1]

    Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].

  2. [2]

    S. Gariazzo, C. Giunti, M. Laveder, Y.F. Li and E.M. Zavanin, Light sterile neutrinos, J. Phys. G 43 (2016) 033001 [arXiv:1507.08204] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation i superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  5. [5]

    M. Shaposhnikov, A possible symmetry of the νMSM, Nucl. Phys. B 763 (2007) 49 [hep-ph/0605047] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    J. Kersten and A. Yu. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [INSPIRE].

  7. [7]

    M.B. Gavela, T. Hambye, D. Hernandez and P. Hernández, Minimal flavour seesaw models, JHEP 09 (2009) 038 [arXiv:0906.1461] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    M. Malinsky, J.C. Romao and J.W.F. Valle, Novel supersymmetric SO (10) seesaw mechanism, Phys. Rev. Lett. 95 (2005) 161801 [hep-ph/0506296] [INSPIRE].

  9. [9]

    S. Antusch and O. Fischer, Testing sterile neutrino extensions of the Standard Model at future lepton colliders, JHEP 05 (2015) 053 [arXiv:1502.05915] [INSPIRE].

    ADS  Article  Google Scholar 

  10. [10]

    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].

  11. [11]

    DELPHI collaboration, P. Abreu et al., Search for neutral heavy leptons produced in Z decays, Z. Phys. C 74 (1997) 57 [Erratum ibid. C 75 (1997) 580] [INSPIRE].

  12. [12]

    OPAL collaboration, M.Z. Akrawy et al., Limits on neutral heavy lepton production from Z 0 decay, Phys. Lett. B 247 (1990) 448 [INSPIRE].

  13. [13]

    ALEPH collaboration, D. Decamp et al., Searches for new particles in Z decays using the ALEPH detector, Phys. Rept. 216 (1992) 253 [INSPIRE].

  14. [14]

    L3 collaboration, O. Adriani et al., Results from the L3 experiment at LEP, Phys. Rept. 236 (1993) 1 [INSPIRE].

  15. [15]

    F. del Aguila and J.A. Aguilar-Saavedra, Electroweak scale seesaw and heavy Dirac neutrino signals at LHC, Phys. Lett. B 672 (2009) 158 [arXiv:0809.2096] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, Trilepton signals: the golden channel for seesaw searches at LHC, Acta Phys. Polon. B 40 (2009) 2901 [arXiv:0910.2720] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    K.N. Abazajian et al., Light sterile neutrinos: a white paper, arXiv:1204.5379 [INSPIRE].

  19. [19]

    P.S. Bhupal Dev, R. Franceschini and R.N. Mohapatra, Bounds on TeV seesaw models from LHC Higgs data, Phys. Rev. D 86 (2012) 093010 [arXiv:1207.2756] [INSPIRE].

    ADS  Google Scholar 

  20. [20]

    M. Drewes, The phenomenology of right handed neutrinos, Int. J. Mod. Phys. E 22 (2013) 1330019 [arXiv:1303.6912] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    C.-H. Lee, P.S. Bhupal Dev and R.N. Mohapatra, Natural TeV-scale left-right seesaw mechanism for neutrinos and experimental tests, Phys. Rev. D 88 (2013) 093010 [arXiv:1309.0774] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    J.C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with displaced vertices, Phys. Rev. D 89 (2014) 073005 [arXiv:1312.2900] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    A. Das, P.S. Bhupal Dev and N. Okada, Direct bounds on electroweak scale pseudo-Dirac neutrinos from \( \sqrt{s}=8 \) TeV LHC data, Phys. Lett. B 735 (2014) 364 [arXiv:1405.0177] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    FCC-ee study Team collaboration, A. Blondel, E. Graverini, N. Serra and M. Shaposhnikov, Search for heavy right handed neutrinos at the FCC-ee, arXiv:1411.5230 [INSPIRE].

  25. [25]

    A. Abada, V. De Romeri, S. Monteil, J. Orloff and A.M. Teixeira, Indirect searches for sterile neutrinos at a high-luminosity Z-factory, JHEP 04 (2015) 051 [arXiv:1412.6322] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    M. Drewes and B. Garbrecht, Experimental and cosmological constraints on heavy neutrinos, arXiv:1502.00477 [INSPIRE].

  27. [27]

    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    P. Humbert, M. Lindner and J. Smirnov, The inverse seesaw in conformal electro-weak symmetry breaking and phenomenological consequences, JHEP 06 (2015) 035 [arXiv:1503.03066] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of heavy neutrino searches at future lepton colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    S. Antusch and O. Fischer, Testing sterile neutrino extensions of the Standard Model at the circular electron positron collider, Int. J. Mod. Phys. A 30 (2015) 1544004 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    L. Duarte, J. Peressutti and O.A. Sampayo, Majorana neutrino decay in an effective approach, Phys. Rev. D 92 (2015) 093002 [arXiv:1508.01588] [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    N. Bizot and M. Frigerio, Fermionic extensions of the Standard Model in light of the Higgs couplings, JHEP 01 (2016) 036 [arXiv:1508.01645] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    C.O. Dib and C.S. Kim, Discovering sterile neutrinos ligther than M W at the LHC, Phys. Rev. D 92 (2015) 093009 [arXiv:1509.05981] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    A. Das and N. Okada, Improved bounds on the heavy neutrino productions at the LHC, Phys. Rev. D 93 (2016) 033003 [arXiv:1510.04790] [INSPIRE].

    ADS  Google Scholar 

  35. [35]

    A. Abada, V. De Romeri and A.M. Teixeira, Impact of sterile neutrinos on nuclear-assisted cLFV processes, JHEP 02 (2016) 083 [arXiv:1510.06657] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A. de Gouvêa and A. Kobach, Global constraints on a heavy neutrino, Phys. Rev. D 93 (2016) 033005 [arXiv:1511.00683] [INSPIRE].

    ADS  Google Scholar 

  37. [37]

    L. Basso, Resonant mono Higgs at the LHC, JHEP 04 (2016) 087 [arXiv:1512.06381] [INSPIRE].

    Article  Google Scholar 

  38. [38]

    A. Datta, M. Guchait and A. Pilaftsis, Probing lepton number violation via Majorana neutrinos at hadron supercolliders, Phys. Rev. D 50 (1994) 3195 [hep-ph/9311257] [INSPIRE].

  39. [39]

    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [INSPIRE].

  40. [40]

    C.-Y. Chen and P.S.B. Dev, Multi-lepton collider signatures of heavy Dirac and Majorana neutrinos, Phys. Rev. D 85 (2012) 093018 [arXiv:1112.6419] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    P.S.B. Dev, A. Pilaftsis and U.-K. Yang, New production mechanism for heavy neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].

    ADS  Article  Google Scholar 

  42. [42]

    D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from W γ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].

    ADS  Article  Google Scholar 

  43. [43]

    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and collider physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of heavy neutrino searches at future lepton colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    C.O. Dib and C.S. Kim, Discovering sterile neutrinos ligther than M W at the LHC, Phys. Rev. D 92 (2015) 093009 [arXiv:1509.05981] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela and J. Lopez-Pavon, Unitarity of the leptonic mixing matrix, JHEP 10 (2006) 084 [hep-ph/0607020] [INSPIRE].

  47. [47]

    S. Antusch and O. Fischer, Non-unitarity of the leptonic mixing matrix: present bounds and future sensitivities, JHEP 10 (2014) 094 [arXiv:1407.6607] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    TLEP Design Study Working Group collaboration, M. Bicer et al., First look at the physics case of TLEP, JHEP 01 (2014) 164 [arXiv:1308.6176] [INSPIRE].

  49. [49]

    M. Ruan, Higgs measurement at e + e circular colliders, arXiv:1411.5606 [INSPIRE].

  50. [50]

    R. Tenchini, Precision electroweak measurements at FCC-ee, arXiv:1412.2928 [INSPIRE].

  51. [51]

    H. Baer et al., The International Linear Collider technical design report — volume 2: physics, arXiv:1306.6352 [INSPIRE].

  52. [52]

    W. Kilian, M. Krämer and P.M. Zerwas, Higgsstrahlung and W W fusion in e + e collisions, Phys. Lett. B 373 (1996) 135 [hep-ph/9512355] [INSPIRE].

  53. [53]

    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    M. Moretti, T. Ohl and J. Reuter, O’Mega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].

  55. [55]

    W. Buchmüller and C. Greub, Heavy Majorana neutrinos in electron-positron and electron-proton collisions, Nucl. Phys. B 363 (1991) 345 [INSPIRE].

    ADS  Article  Google Scholar 

  56. [56]

    D. Neuffer, M. Palmer, Y. Alexahin, C. Ankenbrandt and J.P. Delahaye, A muon collider as a Higgs factory, arXiv:1502.02042 [INSPIRE].

  57. [57]

    E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon and M. Lucente, Loop level constraints on seesaw neutrino mixing, JHEP 10 (2015) 130 [arXiv:1508.03051] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  59. [59]

    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  62. [62]

    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    H. Ono and A. Miyamoto, A study of measurement precision of the Higgs boson branching ratios at the International Linear Collider, Eur. Phys. J. C 73 (2013) 2343 [arXiv:1207.0300] [INSPIRE].

    ADS  Article  Google Scholar 

  64. [64]

    L. Basso, O. Fischer and J.J. van der Bij, Precision tests of unitarity in leptonic mixing, Europhys. Lett. 105 (2014) 11001 [arXiv:1310.2057] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eros Cazzato.

Additional information

ArXiv ePrint: 1512.06035

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antusch, S., Cazzato, E. & Fischer, O. Higgs production from sterile neutrinos at future lepton colliders. J. High Energ. Phys. 2016, 189 (2016). https://doi.org/10.1007/JHEP04(2016)189

Download citation

Keywords

  • Beyond Standard Model
  • Higgs Physics
  • Neutrino Physics