Advertisement

Axion monodromy and the weak gravity conjecture

  • Arthur Hebecker
  • Fabrizio RompineveEmail author
  • Alexander Westphal
Open Access
Regular Article - Theoretical Physics

Abstract

Axions with broken discrete shift symmetry (axion monodromy) have recently played a central role both in the discussion of inflation and the ‘relaxion’ approach to the hierarchy problem. We suggest a very minimalist way to constrain such models by the weak gravity conjecture for domain walls: while the electric side of the conjecture is always satisfied if the cosine-oscillations of the axion potential are sufficiently small, the magnetic side imposes a cutoff, Λ3 ∼ mf M pl, independent of the height of these ‘wiggles’. We compare our approach with the recent related proposal by Ibanez, Montero, Uranga and Valenzuela. We also discuss the non-trivial question which version, if any, of the weak gravity conjecture for domain walls should hold. In particular, we show that string compactifications with branes of different dimensions wrapped on different cycles lead to a ‘geometric weak gravity conjecture’ relating volumes of cycles, norms of corresponding forms and the volume of the compact space. Imposing this ‘geometric conjecture’, e.g. on the basis of the more widely accepted weak gravity conjecture for particles, provides at least some support for the (electric and magnetic) conjecture for domain walls.

Keywords

Strings and branes phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett. 115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.R. Espinosa et al., Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett. 115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    E. Hardy, Electroweak relaxation from finite temperature, JHEP 11 (2015) 077 [arXiv:1507.07525] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    S.P. Patil and P. Schwaller, Relaxing the electroweak scale: the role of broken dS symmetry, JHEP 02 (2016) 077 [arXiv:1507.08649] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Jaeckel, V.M. Mehta and L.T. Witkowski, Musings on cosmological relaxation and the hierarchy problem, Phys. Rev. D 93 (2016) 063522 [arXiv:1508.03321] [INSPIRE].ADSGoogle Scholar
  6. [6]
    R.S. Gupta, Z. Komargodski, G. Perez and L. Ubaldi, Is the Relaxion an Axion?, JHEP 02 (2016) 166 [arXiv:1509.00047] [INSPIRE].
  7. [7]
    B. Batell, G.F. Giudice and M. McCullough, Natural heavy supersymmetry, JHEP 12 (2015) 162 [arXiv:1509.00834] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].ADSGoogle Scholar
  10. [10]
    T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J.P. Conlon and S. Krippendorf, Axion decay constants away from the Lamppost, JHEP 04 (2016) 085 [arXiv:1601.00647] [INSPIRE].
  12. [12]
    S. Abel and R.J. Stewart, Shift-symmetries at higher order, arXiv:1511.02880 [INSPIRE].
  13. [13]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].
  14. [14]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.R. Liddle, A. Mazumdar and F.E. Schunck, Assisted inflation, Phys. Rev. D 58 (1998) 061301 [astro-ph/9804177] [INSPIRE].
  16. [16]
    M. Cicoli, K. Dutta and A. Maharana, N-flation with hierarchically light axions in string compactifications, JCAP 08 (2014) 012 [arXiv:1401.2579] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T.W. Grimm, Axion inflation in F-theory, Phys. Lett. B 739 (2014) 201 [arXiv:1404.4268] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    L.E. Ibáñez and I. Valenzuela, The inflaton as an MSSM Higgs and open string modulus monodromy inflation, Phys. Lett. B 736 (2014) 226 [arXiv:1404.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    R. Kappl, S. Krippendorf and H.P. Nilles, Aligned natural inflation: monodromies of two axions, Phys. Lett. B 737 (2014) 124 [arXiv:1404.7127] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    I. Ben-Dayan, F.G. Pedro and A. Westphal, Hierarchical axion inflation, Phys. Rev. Lett. 113 (2014) 261301 [arXiv:1404.7773] [INSPIRE].
  22. [22]
    C. Long, L. McAllister and P. McGuirk, Aligned natural inflation in string theory, Phys. Rev. D 90 (2014) 023501 [arXiv:1404.7852] [INSPIRE].ADSGoogle Scholar
  23. [23]
    I. Ben-Dayan, F.G. Pedro and A. Westphal, Towards natural inflation in string theory, Phys. Rev. D 92 (2015) 023515 [arXiv:1407.2562] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    H. Abe, T. Kobayashi and H. Otsuka, Natural inflation with and without modulations in type IIB string theory, JHEP 04 (2015) 160 [arXiv:1411.4768] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    F. Ruehle and C. Wieck, Natural inflation and moduli stabilization in heterotic orbifolds JHEP 05 (2015) 112 [arXiv:1503.07183] [INSPIRE].
  26. [26]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  27. [27]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].
  28. [28]
    R. Blumenhagen and E. Plauschinn, Towards universal axion inflation and reheating in string theory, Phys. Lett. B 736 (2014) 482 [arXiv:1404.3542] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].
  30. [30]
    R. Blumenhagen, D. Herschmann and E. Plauschinn, The challenge of realizing F-term axion monodromy inflation in string theory, JHEP 01 (2015) 007 [arXiv:1409.7075] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and backreaction in F-term axion monodromy inflation, Nucl. Phys. B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic inflation and string theory, JHEP 01 (2015) 128 [arXiv:1411.5380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Escobar, A. Landete, F. Marchesano and D. Regalado, Large field inflation from D-branes, Phys. Rev. D 93 (2016) 081301 [arXiv:1505.07871] [INSPIRE].Google Scholar
  34. [34]
    T. Kobayashi, A. Oikawa and H. Otsuka, New potentials for string axion inflation, Phys. Rev. D 93 (2016) 083508 [arXiv:1510.08768] [INSPIRE].Google Scholar
  35. [35]
    D. Escobar, A. Landete, F. Marchesano and D. Regalado, D6-branes and axion monodromy inflation, JHEP 03 (2016) 113 [arXiv:1511.08820] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    J.P. Conlon, Quantum gravity constraints on inflation, JCAP 09 (2012) 019 [arXiv:1203.5476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    C. Cheung and G.N. Remmen, Naturalness and the weak gravity conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287] [INSPIRE].
  39. [39]
    T. Rudelius, On the possibility of large axion moduli spaces, JCAP 04 (2015) 049 [arXiv:1409.5793] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].
  42. [42]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, JHEP 04 (2016) 017 [arXiv:1504.00659] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, JHEP 02 (2016) 128 [arXiv:1504.03566] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP 10 (2015) 188 [arXiv:1508.00009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  50. [50]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    K. Kooner, S. Parameswaran and I. Zavala, Warping the weak gravity conjecture, arXiv:1509.07049 [INSPIRE].
  52. [52]
    D. Andriot, A no-go theorem for monodromy inflation, JCAP 03 (2016) 025 [arXiv:1510.02005] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large field inflation and gravitational entropy, Phys. Rev. D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].ADSGoogle Scholar
  54. [54]
    L.E. Ibáñez, M. Montero, A. Uranga and I. Valenzuela, relaxion monodromy and the weak gravity conjecture, JHEP 04 (2016) 020 [arXiv:1512.00025] [INSPIRE].
  55. [55]
    N. Kaloper and L. Sorbo, A Natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].
  56. [56]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
  58. [58]
    A. Mazumdar and P. Shukla, Model independent bounds on tensor modes and stringy parameters from CMB, arXiv:1411.4636 [INSPIRE].
  59. [59]
    X. Chen, R. Easther and E.A. Lim, Generation and characterization of large non-gaussianities in single field inflation, JCAP 04 (2008) 010 [arXiv:0801.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, JCAP 06 (2010) 009 [arXiv:0907.2916] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    D. Baumann et al., On D3-brane potentials in compactifications with fluxes and wrapped D-branes, JHEP 11 (2006) 031 [hep-th/0607050] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    R. Flauger, L. McAllister, E. Silverstein and A. Westphal, Drifting oscillations in axion monodromy, arXiv:1412.1814 [INSPIRE].
  63. [63]
    J.D. Brown and C. Teitelboim, Dynamical neutralization of the cosmological constant, Phys. Lett. B 195 (1987) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    G. D’Amico, R. Gobbetti, M. Kleban and M. Schillo, Unwinding inflation, JCAP 03 (2013) 004 [arXiv:1211.4589] [INSPIRE].CrossRefGoogle Scholar
  67. [67]
    S. Coleman, The use of instantons, in Aspects of symmetry. Selected Erice lectures, S. Coleman ed., Cambridge University Press, Camrbidge U.K. (1985)Google Scholar
  68. [68]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].
  69. [69]
    J. Polchinski, String theory, 2 volumes, Cambridge University Press, Cambridge U.K. (1998).Google Scholar
  70. [70]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XVII. Constraints on primordial non-Gaussianity, arXiv:1502.01592 [INSPIRE].
  71. [71]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, arXiv:1502.02114 [INSPIRE].
  72. [72]
    H. Peiris, R. Easther and R. Flauger, Constraining monodromy inflation, JCAP 09 (2013) 018 [arXiv:1303.2616] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Arthur Hebecker
    • 1
  • Fabrizio Rompineve
    • 1
    Email author
  • Alexander Westphal
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of HeidelbergHeidelbergGermany
  2. 2.DESY, Theory GroupHamburgGermany

Personalised recommendations