Boundary conditions and partition functions in higher spin AdS3/CFT2

Open Access
Regular Article - Theoretical Physics


We discuss alternative definitions of the semiclassical partition function in two-dimensional CFTs with higher spin symmetry, in the presence of sources for the higher spin currents. Theories of this type can often be described via Hamiltonian reduction of current algebras, and a holographic description in terms of three-dimensional Chern-Simons theory with generalized AdS boundary conditions becomes available. By studying the CFT Ward identities in the presence of sources, we determine the appropriate choice of boundary terms and boundary conditions in Chern-Simons theory for the various types of partition functions considered. In particular, we compare the Chern-Simons description of deformations of the field theory Hamiltonian versus those encoding deformations of the CFT action. Our analysis clarifies various issues and confusions that have permeated the literature on this subject.


AdS-CFT Correspondence Conformal and W Symmetry Gauge-gravity correspondence Higher Spin Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    E.S. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M.A. Vasiliev, Higher spin gauge theories in four-dimensions, three-dimensions and two-dimensions, Int. J. Mod. Phys. D 5 (1996) 763 [hep-th/9611024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  6. [6]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M.R. Gaberdiel and R. Gopakumar, Minimal Model Holography, J. Phys. A 46 (2013) 214002 [arXiv:1207.6697] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  8. [8]
    S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    S. Prokushkin and M.A. Vasiliev, 3-D higher spin gauge theories with matter, hep-th/9812242 [INSPIRE].
  10. [10]
    P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  12. [12]
    E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    A. Campoleoni, T. Prochazka and J. Raeymaekers, A note on conical solutions in 3D Vasiliev theory, JHEP 05 (2013) 052 [arXiv:1303.0880] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    A. Campoleoni and S. Fredenhagen, On the higher-spin charges of conical defects, Phys. Lett. B 726 (2013) 387 [arXiv:1307.3745] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    M.R. Gaberdiel, R. Gopakumar and M. Rangamani, The Spectrum of Light States in Large-N Minimal Models, JHEP 01 (2014) 116 [arXiv:1310.1744] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher Spin Black Holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    E. Hijano, P. Kraus and E. Perlmutter, Matching four-point functions in higher spin AdS 3 /CF T 2, JHEP 05 (2013) 163 [arXiv:1302.6113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    M.R. Gaberdiel, K. Jin and E. Perlmutter, Probing higher spin black holes from CFT, JHEP 10 (2013) 045 [arXiv:1307.2221] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    J. de Boer and J.I. Jottar, Entanglement Entropy and Higher Spin Holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  22. [22]
    M. Ammon, A. Castro and N. Iqbal, Wilson Lines and Entanglement Entropy in Higher Spin Gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Universal correction to higher spin entanglement entropy, Phys. Rev. D 90 (2014) 041903 [arXiv:1405.0015] [INSPIRE].ADSGoogle Scholar
  24. [24]
    V. Drinfeld and V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  25. [25]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefMATHGoogle Scholar
  26. [26]
    P. Kraus and T. Ugajin, An Entropy Formula for Higher Spin Black Holes via Conical Singularities, JHEP 05 (2013) 160 [arXiv:1302.1583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    R. Dijkgraaf, Chiral deformations of conformal field theories, Nucl. Phys. B 493 (1997) 588 [hep-th/9609022] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    J.-S. Caux and R.M. Konik, Constructing the generalized Gibbs ensemble after a quantum quench, Phys. Rev. Lett. 109 (2012) 175301 [arXiv:1203.0901] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    R. Gopakumar, A. Hashimoto, I.R. Klebanov, S. Sachdev and K. Schoutens, Strange Metals in One Spatial Dimension, Phys. Rev. D 86 (2012) 066003 [arXiv:1206.4719] [INSPIRE].ADSGoogle Scholar
  30. [30]
    S. Datta, J.R. David, M. Ferlaino and S.P. Kumar, Higher spin entanglement entropy from CFT, JHEP 06 (2014) 096 [arXiv:1402.0007] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    J.I. Kapusta, Bose-Einstein Condensation, Spontaneous Symmetry Breaking and Gauge Theories, Phys. Rev. D 24 (1981) 426 [INSPIRE].ADSGoogle Scholar
  32. [32]
    N.P. Landsman and C.G. van Weert, Real and Imaginary Time Field Theory at Finite Temperature and Density, Phys. Rept. 145 (1987) 141 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C.M. Hull, Gauging the Zamolodchikov W Algebra, Phys. Lett. B 240 (1990) 110 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C.M. Hull, Higher spin extended conformal algebras and W gravities, Nucl. Phys. B 353 (1991) 707 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    K. Schoutens, A. Sevrin and P. van Nieuwenhuizen, A New Gauge Theory for W Type Algebras, Phys. Lett. B 243 (1990) 245 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    A.B. Zamolodchikov, Infinite Additional Symmetries in Two-Dimensional Conformal Quantum Field Theory, Theor. Math. Phys. 65 (1985) 1205 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  37. [37]
    V.A. Fateev and A.B. Zamolodchikov, Conformal Quantum Field Theory Models in Two-Dimensions Having Z(3) Symmetry, Nucl. Phys. B 280 (1987) 644 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    A.R. Mikovic, Hamiltonian construction of W gravity actions, Phys. Lett. B 278 (1992) 51 [hep-th/9108002] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    L.J. Romans, Realizations of classical and quantum W(3) symmetry, Nucl. Phys. B 352 (1991) 829 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    C.M. Hull, Chiral W gravities for general extended conformal algebras, Phys. Lett. B 259 (1991) 68 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    E. Witten, Nonabelian Bosonization in Two-Dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    A.R. Mikovic, Gauging the extended conformal algebras, Phys. Lett. B 260 (1991) 75 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  45. [45]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  46. [46]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    M. Henneaux and S.-J. Rey, Nonlinear W as Asymptotic Symmetry of Three-Dimensional Higher Spin Anti-de Sitter Gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [arXiv:1101.2910] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    H.L. Verlinde, Conformal Field Theory, 2-D Quantum Gravity and Quantization of Teichmüller Space, Nucl. Phys. B 337 (1990) 652 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    F.A. Bais, T. Tjin and P. van Driel, Covariantly coupled chiral algebras, Nucl. Phys. B 357 (1991) 632 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    A. Bilal, W algebras from Chern-Simons theory, Phys. Lett. B 267 (1991) 487 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    J. de Boer and J. Goeree, W gravity from Chern-Simons theory, Nucl. Phys. B 381 (1992) 329 [hep-th/9112060] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    J. De Boer and J. Goeree, Covariant W gravity and its moduli space from gauge theory, Nucl. Phys. B 401 (1993) 369 [hep-th/9206098] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  56. [56]
    J. de Boer and T. Tjin, The Relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2-D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: A review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  59. [59]
    M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: Black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  61. [61]
    A. Perez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, JHEP 04 (2013) 143 [arXiv:1301.0847] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    G. Compère, J.I. Jottar and W. Song, Observables and Microscopic Entropy of Higher Spin Black Holes, JHEP 11 (2013) 054 [arXiv:1308.2175] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    G. Compère and W. Song, \( \mathcal{W} \) symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized Black Holes in Three-dimensional Spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  67. [67]
    E. Hijano and P. Kraus, A new spin on entanglement entropy, JHEP 12 (2014) 041 [arXiv:1406.1804] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    W. Li, F.-L. Lin and C.-W. Wang, Modular Properties of 3D Higher Spin Theory, JHEP 12 (2013) 094 [arXiv:1308.2959] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravity — General recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  71. [71]
    P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    C.M. Hull, Lectures on W gravity, W geometry and W strings, hep-th/9302110 [INSPIRE].
  73. [73]
    M. Bañados and R. Caro, Holographic ward identities: Examples from 2+1 gravity, JHEP 12 (2004) 036 [hep-th/0411060] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    H.-S. Tan, Aspects of Three-dimensional Spin-4 Gravity, JHEP 02 (2012) 035 [arXiv:1111.2834] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations