Shape dependence of entanglement entropy in conformal field theories

  • Thomas Faulkner
  • Robert G. Leigh
  • Onkar Parrikar
Open Access
Regular Article - Theoretical Physics

Abstract

We study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on \( {\mathrm{\mathbb{R}}}^{1,d-1} \). We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, and proportional to the coefficient CT appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient \( \frac{\sigma }{C_T}=\frac{\pi^2}{24} \) in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.

Keywords

AdS-CFT Correspondence Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetMATHGoogle Scholar
  3. [3]
    H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42 (2009) 504007 [arXiv:0905.2562] [INSPIRE].MathSciNetMATHGoogle Scholar
  4. [4]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    T. Faulkner, The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  6. [6]
    T. Faulkner, Bulk Emergence and the RG Flow of Entanglement Entropy, JHEP 05 (2015) 033 [arXiv:1412.5648] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405.ADSCrossRefGoogle Scholar
  9. [9]
    S. Dong, E. Fradkin, R.G. Leigh and S. Nowling, Topological Entanglement Entropy in Chern-Simons Theories and Quantum Hall Fluids, JHEP 05 (2008) 016 [arXiv:0802.3231] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    H. Li and F. Haldane, Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States, Phys. Rev. Lett. 101 (2008) 010504 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    S. Ryu and T. Takayanagi, Aspects of Holographic Entanglement Entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    T. Faulkner, M. Guica, T. Hartman, R.C. Myers and M. Van Raamsdonk, Gravitation from Entanglement in Holographic CFTs, JHEP 03 (2014) 051 [arXiv:1312.7856] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Nozaki, T. Numasawa and T. Takayanagi, Holographic Local Quenches and Entanglement Density, JHEP 05 (2013) 080 [arXiv:1302.5703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement Entropy from Einstein Equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J. Bhattacharya, V.E. Hubeny, M. Rangamani and T. Takayanagi, Entanglement density and gravitational thermodynamics, Phys. Rev. D 91 (2015) 106009 [arXiv:1412.5472] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Bousso, Z. Fisher, S. Leichenauer and A.C. Wall, Quantum focusing conjecture, Phys. Rev. D 93 (2016) 064044 [arXiv:1506.02669] [INSPIRE].ADSGoogle Scholar
  20. [20]
    B. Czech, L. Lamprou, S. McCandlish and J. Sully, Integral Geometry and Holography, JHEP 10 (2015) 175 [arXiv:1505.05515] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    V. Rosenhaus and M. Smolkin, Entanglement Entropy: A Perturbative Calculation, JHEP 12 (2014) 179 [arXiv:1403.3733] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    V. Rosenhaus and M. Smolkin, Entanglement Entropy for Relevant and Geometric Perturbations, JHEP 02 (2015) 015 [arXiv:1410.6530] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Allais and M. Mezei, Some results on the shape dependence of entanglement and Rnyi entropies, Phys. Rev. D 91 (2015) 046002 [arXiv:1407.7249] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universality of corner entanglement in conformal field theories, Phys. Rev. Lett. 115 (2015) 021602 [arXiv:1505.04804] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P. Bueno and R.C. Myers, Corner contributions to holographic entanglement entropy, JHEP 08 (2015) 068 [arXiv:1505.07842] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Mezei, Entanglement entropy across a deformed sphere, Phys. Rev. D 91 (2015) 045038 [arXiv:1411.7011] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    P. Bueno and R.C. Myers, Universal entanglement for higher dimensional cones, JHEP 12 (2015) 168 [arXiv:1508.00587] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    P. Bueno, R.C. Myers and W. Witczak-Krempa, Universal corner entanglement from twist operators, JHEP 09 (2015) 091 [arXiv:1507.06997] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R.-X. Miao, A holographic proof of the universality of corner entanglement for CFTs, JHEP 10 (2015) 038 [arXiv:1507.06283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    P. Bueno and W. Witczak-Krempa, Bounds on corner entanglement in quantum critical states, Phys. Rev. B 93 (2016) 045131 [arXiv:1511.04077] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    I.R. Klebanov, T. Nishioka, S.S. Pufu and B.R. Safdi, On Shape Dependence and RG Flow of Entanglement Entropy, JHEP 07 (2012) 001 [arXiv:1204.4160] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    X. Huang, L.-Y. Hung and F.-L. Lin, OPE of the stress tensors and surface operators, JHEP 06 (2015) 087 [arXiv:1502.02487] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    D. Carmi, On the Shape Dependence of Entanglement Entropy, JHEP 12 (2015) 043 [arXiv:1506.07528] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    H. Elvang and M. Hadjiantonis, Exact results for corner contributions to the entanglement entropy and Rnyi entropies of free bosons and fermions in 3d, Phys. Lett. B 749 (2015) 383 [arXiv:1506.06729] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    P. Fonda, D. Seminara and E. Tonni, On shape dependence of holographic entanglement entropy in AdS 4 /CFT 3, JHEP 12 (2015) 037 [arXiv:1510.03664] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J.J. Bisognano and E.H. Wichmann, On the Duality Condition for Quantum Fields, J. Math. Phys. 17 (1976) 303 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    S. Banerjee, Wess-Zumino Consistency Condition for Entanglement Entropy, Phys. Rev. Lett. 109 (2012) 010402 [arXiv:1109.5672] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Casini, M. Huerta, R.C. Myers and A. Yale, Mutual information and the F-theorem, JHEP 10 (2015) 003 [arXiv:1506.06195] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    H. Liu and M. Mezei, A Refinement of entanglement entropy and the number of degrees of freedom, JHEP 04 (2013) 162 [arXiv:1202.2070] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    T. Grover, A.M. Turner and A. Vishwanath, Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions, Phys. Rev. B 84 (2011) 195120 [arXiv:1108.4038] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning Conformal Correlators, JHEP 11 (2011) 071 [arXiv:1107.3554] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  43. [43]
    J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [arXiv:1104.2846] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP 07 (2013) 105 [arXiv:1104.4317] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    H.S. Cohl, On a generalization of the generating function for Gegenbauer polynomials, arXiv:1105.2735.
  46. [46]
    R. Szmytkowski, Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (−1, 1), arXiv:1107.2680.
  47. [47]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from Conformal Field Theory, JHEP 10 (2009) 079 [arXiv:0907.0151] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    T. Hartman, Entanglement Entropy at Large Central Charge, arXiv:1303.6955 [INSPIRE].
  49. [49]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar
  50. [50]
    L. Bianchi, M. Meineri, R.C. Myers and M. Smolkin, Rényi Entropy and Conformal Defects, arXiv:1511.06713 [INSPIRE].
  51. [51]
    A. Lewkowycz and E. Perlmutter, Universality in the geometric dependence of Renyi entropy, JHEP 01 (2015) 080 [arXiv:1407.8171] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Thomas Faulkner
    • 1
  • Robert G. Leigh
    • 1
  • Onkar Parrikar
    • 1
  1. 1.Department of PhysicsUniversity of IllinoisUrbanaU.S.A.

Personalised recommendations