Axion decay constants away from the lamppost

  • Joseph P. Conlon
  • Sven Krippendorf
Open Access
Regular Article - Theoretical Physics


It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 M P ). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.


Strings and branes phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo-Nambu-Goldstone bosons, Phys. Rev. Lett. 65 (1990) 3233 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005 [hep-ph/0409138] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N-flation, JCAP 08 (2008) 003 [hep-th/0507205] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T.W. Grimm, Axion inflation in type-II string theory, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  6. [6]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Cicoli, C.P. Burgess and F. Quevedo, Fibre inflation: observable gravity waves from IIB string compactifications, JCAP 03 (2009) 013 [arXiv:0808.0691] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    M. Berg, E. Pajer and S. Sjors, Dante’s Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].ADSGoogle Scholar
  10. [10]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Blumenhagen and E. Plauschinn, Towards universal axion inflation and reheating in string theory, Phys. Lett. B 736 (2014) 482 [arXiv:1404.3542] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    L.E. Ibáñez and I. Valenzuela, The inflaton as an MSSM Higgs and open string modulus monodromy inflation, Phys. Lett. B 736 (2014) 226 [arXiv:1404.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, Chaotic inflation with kinetic alignment of axion fields, Phys. Rev. D 91 (2015) 023520 [arXiv:1404.7496] [INSPIRE].ADSGoogle Scholar
  16. [16]
    I. Ben-Dayan, F.G. Pedro and A. Westphal, Towards natural inflation in string theory, Phys. Rev. D 92 (2015) 023515 [arXiv:1407.2562] [INSPIRE].ADSGoogle Scholar
  17. [17]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions in string theory, JHEP 12 (2015) 042 [arXiv:1412.1093] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    I. García-Etxebarria, T.W. Grimm and I. Valenzuela, Special points of inflation in flux compactifications, Nucl. Phys. B 899 (2015) 414 [arXiv:1412.5537] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    D. Baumann and L. McAllister, Inflation and string theory, Cambridge University Press, Cambridge U.K. (2015) [INSPIRE].CrossRefMATHGoogle Scholar
  20. [20]
    A. Westphal, String cosmology — large-field inflation in string theory, Adv. Ser. Direct. High Energy Phys. 22 (2015) 351.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    D. Baumann and L. McAllister, A microscopic limit on gravitational waves from D-brane inflation, Phys. Rev. D 75 (2007) 123508 [hep-th/0610285] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J.P. Conlon, Quantum gravity constraints on inflation, JCAP 09 (2012) 019 [arXiv:1203.5476] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    N. Kaloper, M. Kleban, A. Lawrence and M.S. Sloth, Large field inflation and gravitational entropy, Phys. Rev. D 93 (2016) 043510 [arXiv:1511.05119] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.P. Conlon, Brane-antibrane backreaction in axion monodromy inflation, JCAP 01 (2012) 033 [arXiv:1110.6454] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    E. Palti, On natural inflation and moduli stabilisation in string theory, JHEP 10 (2015) 188 [arXiv:1508.00009] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    D. Andriot, A no-go theorem for monodromy inflation, JCAP 03 (2016) 025 [arXiv:1510.02005] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys. Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032 [arXiv:1503.03886] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    T.C. Bachlechner, C. Long and L. McAllister, Planckian axions and the weak gravity conjecture, JHEP 01 (2016) 091 [arXiv:1503.07853] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp: evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015) 455 [arXiv:1503.07912] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    J. Brown, W. Cottrell, G. Shiu and P. Soler, On axionic field ranges, loopholes and the weak gravity conjecture, arXiv:1504.00659 [INSPIRE].
  35. [35]
    T. Rudelius, Constraints on axion inflation from the weak gravity conjecture, JCAP 09 (2015) 020 [arXiv:1503.00795] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture, JHEP 02 (2016) 128 [arXiv:1504.03566] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    B. Heidenreich, M. Reece and T. Rudelius, Sharpening the weak gravity conjecture with dimensional reduction, JHEP 02 (2016) 140 [arXiv:1509.06374] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    K. Kooner, S. Parameswaran and I. Zavala, Warping the weak gravity conjecture, arXiv:1509.07049 [INSPIRE].
  40. [40]
    A. Hebecker, F. Rompineve and A. Westphal, Axion monodromy and the weak gravity conjecture, arXiv:1512.03768 [INSPIRE].
  41. [41]
    M. Cicoli, K. Dutta and A. Maharana, N-flation with hierarchically light axions in string compactifications, JCAP 08 (2014) 012 [arXiv:1401.2579] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Witten, Instability of the Kaluza-Klein vacuum, Nucl. Phys. B 195 (1982) 481 [INSPIRE].ADSCrossRefMATHGoogle Scholar
  43. [43]
    D. Robles-Llana, F. Saueressig and S. Vandoren, String loop corrected hypermultiplet moduli spaces, JHEP 03 (2006) 081 [hep-th/0602164] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    A. Klemm and S. Theisen, Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler potentials and mirror maps, Nucl. Phys. B 389 (1993) 153 [hep-th/9205041] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    A. Klemm and S. Theisen, Mirror maps and instanton sums for complete intersections in weighted projective space, Mod. Phys. Lett. A 9 (1994) 1807 [hep-th/9304034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    H. Kawada, T. Masuda and H. Suzuki, Mirror symmetry of minimal Calabi-Yau manifolds, arXiv:1512.07737 [INSPIRE].
  48. [48]
    V. Braun, P. Candelas and X. De La Ossa, Two one-parameter special geometries, arXiv:1512.08367 [INSPIRE].
  49. [49]
    V. Braun, P. Candelas and R. Davies, A three-generation Calabi-Yau manifold with small Hodge numbers, Fortschr. Phys. 58 (2010) 467 [arXiv:0910.5464] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  50. [50]
    P. Candelas, X. De La Ossa, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two-parameter models (I), Nucl. Phys. B 416 (1994) 481 [hep-th/9308083] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    A. Giryavets, S. Kachru, P.K. Tripathy and S.P. Trivedi, Flux compactifications on Calabi-Yau threefolds, JHEP 04 (2004) 003 [hep-th/0312104] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    R. Kappl, S. Krippendorf and H.P. Nilles, Aligned natural inflation: monodromies of two axions, Phys. Lett. B 737 (2014) 124 [arXiv:1404.7127] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    C. Burgess and D. Roest, Inflation by alignment, JCAP 06 (2015) 012 [arXiv:1412.1614] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    C. Long, L. McAllister and P. McGuirk, Aligned natural inflation in string theory, Phys. Rev. D 90 (2014) 023501 [arXiv:1404.7852] [INSPIRE].ADSGoogle Scholar
  55. [55]
    K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].ADSGoogle Scholar
  56. [56]
    C. Long, L. McAllister and P. McGuirk, Heavy tails in Calabi-Yau moduli spaces, JHEP 10 (2014) 187 [arXiv:1407.0709] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  57. [57]
    R. Kappl, H.P. Nilles and M.W. Winkler, Modulated natural inflation, Phys. Lett. B 753 (2016) 653 [arXiv:1511.05560] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    K. Choi and H. Kim, Aligned natural inflation with modulations, arXiv:1511.07201 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordU.K.

Personalised recommendations