Advertisement

Linear versus non-linear supersymmetry, in general

  • Sergio Ferrara
  • Renata KalloshEmail author
  • Antoine Van Proeyen
  • Timm Wrase
Open Access
Regular Article - Theoretical Physics

Abstract

We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

Keywords

Supergravity Models Supersymmetry Breaking Cosmology of Theories beyond the SM 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, When does supergravity become strong?, Phys. Lett. B216 (1989) 325 [Erratum ibid. B 229 (1989) 439].Google Scholar
  2. [2]
    R. Kallosh, L. Kofman, A.D. Linde and A. Van Proeyen, Superconformal symmetry, supergravity and cosmology, Class. Quant. Grav. 17 (2000) 4269 [Erratum ibid. 21 (2004) 5017] [hep-th/0006179] [INSPIRE].
  3. [3]
    S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys. Rev. D 93 (2016) 043516 [arXiv:1512.00545] [INSPIRE].ADSGoogle Scholar
  4. [4]
    J.J.M. Carrasco, R. Kallosh and A. Linde, Minimal supergravity inflation, Phys. Rev. D 93 (2016) 061301 [arXiv:1512.00546] [INSPIRE].ADSGoogle Scholar
  5. [5]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    D.V. Volkov and V.P. Akulov, Possible universal neutrino interaction, JETP Lett. 16 (1972) 438 [INSPIRE].ADSzbMATHGoogle Scholar
  7. [7]
    D. Volkov and V. Akulov, Is the neutrino a Goldstone particle?, Phys. Lett. B 46 (1973) 109.ADSCrossRefGoogle Scholar
  8. [8]
    M. Roček, Linearizing the Volkov-Akulov model, Phys. Rev. Lett. 41 (1978) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    E.A. Ivanov and A.A. Kapustnikov, General relationship between linear and nonlinear realizations of supersymmetry, J. Phys. A 11 (1978) 2375 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    U. Lindström and M. Roček, Constrained local superfields, Phys. Rev. D 19 (1979) 2300 [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  14. [14]
    S.M. Kuzenko and S.J. Tyler, Relating the Komargodski-Seiberg and Akulov-Volkov actions: Exact nonlinear field redefinition, Phys. Lett. B 698 (2011) 319 [arXiv:1009.3298] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S.M. Kuzenko and S.J. Tyler, On the Goldstino actions and their symmetries, JHEP 05 (2011) 055 [arXiv:1102.3043] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, Properties of nilpotent supergravity, JHEP 09 (2015) 217 [arXiv:1507.07842] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter supergravity, Phys. Rev. D 92 (2015) 085040 [arXiv:1507.08264] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4 dimensional N = 1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    R. Kallosh and T. Wrase, de Sitter supergravity model building, Phys. Rev. D 92 (2015) 105010 [arXiv:1509.02137] [INSPIRE].
  22. [22]
    M. Schillo, E. van der Woerd and T. Wrase, The general de Sitter supergravity component action, arXiv:1511.01542 [INSPIRE].
  23. [23]
    R. Kallosh, A. Karlsson and D. Murli, From linear to nonlinear supersymmetry via functional integration, Phys. Rev. D 93 (2016) 025012 [arXiv:1511.07547] [INSPIRE].ADSGoogle Scholar
  24. [24]
    D.M. Ghilencea, Comments on the nilpotent constraint of the goldstino superfield, arXiv:1512.07484 [INSPIRE].
  25. [25]
    Y. Kahn, D.A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric inflation, JHEP 10 (2015) 001 [arXiv:1504.05958] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Dall’Agata and F. Farakos, Constrained superfields in supergravity, JHEP 02 (2016) 101 [arXiv:1512.02158] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Kugo and S. Uehara, Conformal and Poincaré tensor calculi in N = 1 supergravity, Nucl. Phys. B 226 (1983) 49 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Van Proeyen, Superconformal tensor calculus in N = 1 and N = 2 supergravity, in Supersymmetry and supergravity 1983, XIXth Winter School and Workshop of Theoretical Physics, Karpacz Poland (1983), B. Milewski eds, World Scientific, Singapore (1983).Google Scholar
  29. [29]
    T. Kugo and S. Uehara, N = 1 Superconformal tensor calculus: multiplets with external Lorentz indices and spinor derivative operators, Prog. Theor. Phys. 73 (1985) 235 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge U.K. (2012).CrossRefzbMATHGoogle Scholar
  31. [31]
    R. Kallosh, A. Karlsson, B. Mosk and D. Murli, Orthogonal nilpotent superfields from linear models, arXiv:1603.02661 [INSPIRE].
  32. [32]
    G. Dall’Agata, S. Ferrara and F. Zwirner, Minimal scalar-less matter-coupled supergravity, Phys. Lett. B 752 (2016) 263 [arXiv:1509.06345] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    S. Ferrara and A. Zaffaroni, Superconformal field theories, multiplet shortening and the AdS 5 /SCFT 4 correspondence, hep-th/9908163 [INSPIRE].
  34. [34]
    S. Ferrara and P. van Nieuwenhuizen, Tensor calculus for supergravity, Phys. Lett. B 76 (1978) 404 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    S. Ferrara and P. Van Nieuwenhuizen, Structure of Supergravity, Phys. Lett. B 78 (1978) 573 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    K.S. Stelle and P.C. West, Relation between vector and scalar multiplets and gauge invariance in supergravity, Nucl. Phys. B 145 (1978) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    E. Cremmer, B. Julia, J. Scherk, P. van Nieuwenhuizen, S. Ferrara and L. Girardello, Super-Higgs effect in supergravity with general scalar interactions, Phys. Lett. B 79 (1978) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen, Spontaneous symmetry breaking and Higgs effect in supergravity without cosmological constant, Nucl. Phys. B 147 (1979) 105 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    P. van Nieuwenhuizen, Lectures in supergravity theory, in NATO Advanced Study Institutes Series. Vol. 44: Recent developments in gravitation, Cargèse 1978, M. Levy and S. Deser eds., Springer, Berlin germany (1979), pg. 519.Google Scholar
  40. [40]
    M.F. Sohnius and P.C. West, Supergravity with one auxiliary spinor, Nucl. Phys. B 216 (1983) 100 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Coupling supersymmetric Yang-Mills theories to supergravity, Phys. Lett. B 116 (1982) 231 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills theories with local supersymmetry: Lagrangian, transformation laws and superhiggs effect, Nucl. Phys. B 212 (1983) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    A. Van Proeyen, Massive vector multiplets in supergravity, Nucl. Phys. B 162 (1980) 376 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Cecotti, Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1., Phys. Lett. B 190 (1987) 86 [INSPIRE].
  45. [45]
    E. Bergshoeff, D. Freedman, R. Kallosh and A. Van Proeyen, Construction of the de Sitter supergravity, to be published in the proceedings of the Workshop About various kinds of interactions’ in honor of Philippe Spindel, Mons Belgium (2015) arXiv:1602.01678 [INSPIRE].
  46. [46]
    B. de Wit and M. Roček, Improved tensor multiplets, Phys. Lett. B 109 (1982) 439.ADSCrossRefGoogle Scholar
  47. [47]
    S. Ferrara, L. Girardello, T. Kugo and A. Van Proeyen, Relation between different auxiliary field formulations of N = 1 supergravity coupled to matter, Nucl. Phys. B 223 (1983) 191 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Kugo, R. Yokokura and K. Yoshioka, Component versus superspace approaches to D = 4, N =1 conformal supergravity, arXiv:1602.04441 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Sergio Ferrara
    • 1
    • 2
    • 3
  • Renata Kallosh
    • 4
    Email author
  • Antoine Van Proeyen
    • 5
  • Timm Wrase
    • 6
  1. 1.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  2. 2.INFN - Laboratori Nazionali di FrascatiFrascatiItaly
  3. 3.Department of Physics and AstronomyU.C.L.A.Los AngelesU.S.A.
  4. 4.SITP and Department of PhysicsStanford UniversityStanfordU.S.A.
  5. 5.Institute for Theoretical PhysicsKatholieke Universiteit LeuvenLeuvenBelgium
  6. 6.Institute for Theoretical PhysicsTechnische Universität WienViennaAustria

Personalised recommendations