Lattice calculation of the leading strange quark-connected contribution to the muon g − 2

  • The RBC/UKQCD collaboration
  • T. Blum
  • P. A. Boyle
  • L. Del Debbio
  • R. J. Hudspith
  • T. Izubuchi
  • A. Jüttner
  • C. Lehner
  • R. Lewis
  • K. Maltman
  • M. Krstić Marinković
  • A. Portelli
  • M. Spraggs
Open Access
Regular Article - Theoretical Physics

Abstract

We present results for the leading hadronic contribution to the muon anomalous magnetic moment due to strange quark-connected vacuum polarisation effects. Simulations were performed using RBC-UKQCD’s Nf = 2 + 1 domain wall fermion ensembles with physical light sea quark masses at two lattice spacings. We consider a large number of analysis scenarios in order to obtain solid estimates for residual systematic effects. Our final result in the continuum limit is aμ(2)had,s = 53.1(9)(− 3+ 1) × 10− 10.

Keywords

Lattice QCD Lattice Quantum Field Theory 

References

  1. [1]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].
  2. [2]
    F. Jegerlehner and A. Nyffeler, The Muon g − 2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Fermilab E989 collaboration, J. Kaspar, Status of the Fermilab g − 2 experiment, Nucl. Part. Phys. Proc. 260 (2015) 243 [arXiv:1504.01201] [INSPIRE].
  4. [4]
    T. Blum, S. Chowdhury, M. Hayakawa and T. Izubuchi, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD, Phys. Rev. Lett. 114 (2015) 012001 [arXiv:1407.2923] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    J. Green, O. Gryniuk, G. von Hippel, H.B. Meyer and V. Pascalutsa, Lattice QCD calculation of hadronic light-by-light scattering, Phys. Rev. Lett. 115 (2015) 222003 [arXiv:1507.01577] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    T. Blum, N. Christ, M. Hayakawa, T. Izubuchi, L. Jin and C. Lehner, Lattice Calculation of Hadronic Light-by-Light Contribution to the Muon Anomalous Magnetic Moment, Phys. Rev. D 93 (2016) 014503 [arXiv:1510.07100] [INSPIRE].ADSGoogle Scholar
  7. [7]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to α(M Z), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  8. [8]
    K. Hagiwara, R. Liao, A.D. Martin, D. Nomura and T. Teubner, (g − 2)μ and α(M Z2) re-evaluated using new precise data, J. Phys. G 38 (2011) 085003 [arXiv:1105.3149] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Blum, Lattice calculation of the lowest order hadronic contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 91 (2003) 052001 [hep-lat/0212018] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    C. Aubin and T. Blum, Calculating the hadronic vacuum polarization and leading hadronic contribution to the muon anomalous magnetic moment with improved staggered quarks, Phys. Rev. D 75 (2007) 114502 [hep-lat/0608011] [INSPIRE].ADSGoogle Scholar
  11. [11]
    X. Feng, K. Jansen, M. Petschlies and D.B. Renner, Two-flavor QCD correction to lepton magnetic moments at leading-order in the electromagnetic coupling, Phys. Rev. Lett. 107 (2011) 081802 [arXiv:1103.4818] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    M. Della Morte, B. Jager, A. Jüttner and H. Wittig, Towards a precise lattice determination of the leading hadronic contribution to (g − 2)μ, JHEP 03 (2012) 055 [arXiv:1112.2894] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  13. [13]
    P. Boyle, L. Del Debbio, E. Kerrane and J. Zanotti, Lattice Determination of the Hadronic Contribution to the Muon g − 2 using Dynamical Domain Wall Fermions, Phys. Rev. D 85 (2012) 074504 [arXiv:1107.1497] [INSPIRE].ADSGoogle Scholar
  14. [14]
    ETM collaboration, F. Burger et al., Four-Flavour Leading-Order Hadronic Contribution To The Muon Anomalous Magnetic Moment, JHEP 02 (2014) 099 [arXiv:1308.4327] [INSPIRE].
  15. [15]
    G. Bali and G. Endrődi, Hadronic vacuum polarization and muon g − 2 from magnetic susceptibilities on the lattice, Phys. Rev. D 92 (2015) 054506 [arXiv:1506.08638] [INSPIRE].ADSGoogle Scholar
  16. [16]
    HPQCD collaboration, B. Chakraborty et al., An estimate of the hadronic vacuum polarization disconnected contribution to the anomalous magnetic moment of the muon from lattice QCD, arXiv:1512.03270 [INSPIRE].
  17. [17]
    RBC/UKQCD collaboration, T. Blum et al., Calculation of the hadronic vacuum polarization disconnected contribution to the muon anomalous magnetic moment, arXiv:1512.09054 [INSPIRE].
  18. [18]
    HPQCD collaboration, B. Chakraborty et al., Strange and charm quark contributions to the anomalous magnetic moment of the muon, Phys. Rev. D 89 (2014) 114501 [arXiv:1403.1778] [INSPIRE].
  19. [19]
    HPQCD collaboration, B. Chakraborty et al., The hadronic vacuum polarization contribution to a μ from full lattice QCD, arXiv:1601.03071 [INSPIRE].
  20. [20]
    A. Jüttner and M. Della Morte, New ideas for g − 2 on the lattice, PoS(LAT2009)143 [arXiv:0910.3755] [INSPIRE].
  21. [21]
    M. Della Morte and A. Jüttner, Quark disconnected diagrams in chiral perturbation theory, JHEP 11 (2010) 154 [arXiv:1009.3783] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    V. Gülpers, A. Francis, B. Jäger, H. Meyer, G. von Hippel and H. Wittig, The leading disconnected contribution to the anomalous magnetic moment of the muon, PoS(LATTICE2014)128 [arXiv:1411.7592] [INSPIRE].
  23. [23]
    D.B. Kaplan, A method for simulating chiral fermions on the lattice, Phys. Lett. B 288 (1992) 342 [hep-lat/9206013] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    Y. Shamir, Chiral fermions from lattice boundaries, Nucl. Phys. B 406 (1993) 90 [hep-lat/9303005] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    R.C. Brower, H. Neff and K. Orginos, Möbius fermions: Improved domain wall chiral fermions, Nucl. Phys. Proc. Suppl. 140 (2005) 686 [hep-lat/0409118] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    R.C. Brower, H. Neff and K. Orginos, Möbius fermions, Nucl. Phys. Proc. Suppl. 153 (2006) 191 [hep-lat/0511031] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    R.C. Brower, H. Neff and K. Orginos, The Möbius Domain Wall Fermion Algorithm, arXiv:1206.5214 [INSPIRE].
  28. [28]
    UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503 [hep-lat/9810021] [INSPIRE].
  29. [29]
    UKQCD collaboration, C. McNeile et al., Decay width of light quark hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506 [hep-lat/0603007] [INSPIRE].
  30. [30]
    RBC/UKQCD collaboration, P.A. Boyle et al., Use of stochastic sources for the lattice determination of light quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501] [INSPIRE].
  31. [31]
    D. Bernecker and H.B. Meyer, Vector Correlators in Lattice QCD: Methods and applications, Eur. Phys. J. A 47 (2011) 148 [arXiv:1107.4388] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Aubin, T. Blum, P. Chau, M. Golterman, S. Peris and C. Tu, Finite-volume effects in the muon anomalous magnetic moment on the lattice, arXiv:1512.07555 [INSPIRE].
  33. [33]
    L. Del Debbio and A. Portelli, A continuous parameter-free interpolation of the momentum space hadronic vacuum polarization in finite volume, to appear.Google Scholar
  34. [34]
    RBC/UKQCD collaboration, T. Blum et al., Domain wall QCD with physical quark masses, arXiv:1411.7017 [INSPIRE].
  35. [35]
    P.A. Boyle, Hierarchically deflated conjugate gradient, arXiv:1402.2585 [INSPIRE].
  36. [36]
    M. Golterman, K. Maltman and S. Peris, New strategy for the lattice evaluation of the leading order hadronic contribution to (g − 2)μ, Phys. Rev. D 90 (2014) 074508 [arXiv:1405.2389] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, Three loop polarization function and O(α S2) corrections to the production of heavy quarks, Nucl. Phys. B 482 (1996) 213 [hep-ph/9606230] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Golterman, K. Maltman and S. Peris, Tests of hadronic vacuum polarization fits for the muon anomalous magnetic moment, Phys. Rev. D 88 (2013) 114508 [arXiv:1309.2153] [INSPIRE].ADSGoogle Scholar
  39. [39]
    C. Aubin, T. Blum, M. Golterman and S. Peris, Pade approximants and g − 2 for the muon, PoS(LATTICE 2012)176 [arXiv:1210.7611] [INSPIRE].
  40. [40]
    C. Aubin, T. Blum, M. Golterman and S. Peris, Model-independent parametrization of the hadronic vacuum polarization and g − 2 for the muon on the lattice, Phys. Rev. D 86 (2012) 054509 [arXiv:1205.3695] [INSPIRE].ADSGoogle Scholar
  41. [41]
    X. Feng, S. Hashimoto, G. Hotzel, K. Jansen, M. Petschlies and D.B. Renner, Computing the hadronic vacuum polarization function by analytic continuation, Phys. Rev. D 88 (2013) 034505 [arXiv:1305.5878] [INSPIRE].ADSGoogle Scholar
  42. [42]
    BMW collaboration, S. Dürr et al., Ab-Initio Determination of Light Hadron Masses, Science 322 (2008) 1224 [arXiv:0906.3599] [INSPIRE].
  43. [43]
    L. Jin, T. Blum, N. Christ, M. Hayakawa, T. Izubuchi and C. Lehner, Hadronic Light by Light Contributions to the Muon Anomalous Magnetic Moment With Physical Pions, arXiv:1511.05198 [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • The RBC/UKQCD collaboration
  • T. Blum
    • 1
  • P. A. Boyle
    • 2
  • L. Del Debbio
    • 2
  • R. J. Hudspith
    • 3
  • T. Izubuchi
    • 4
    • 5
  • A. Jüttner
    • 6
  • C. Lehner
    • 4
  • R. Lewis
    • 3
  • K. Maltman
    • 7
    • 8
  • M. Krstić Marinković
    • 6
    • 9
  • A. Portelli
    • 2
    • 6
  • M. Spraggs
    • 6
  1. 1.Physics DepartmentUniversity of ConnecticutStorrsU.S.A.
  2. 2.School of Physics and AstronomyUniversity of EdinburghEdinburghU.K.
  3. 3.Department of Physics and AstronomyYork UniversityTorontoCanada
  4. 4.Physics DepartmentBrookhaven National LaboratoryUptonU.S.A.
  5. 5.RIKEN-BNL Research CenterBrookhaven National LaboratoryUptonU.S.A.
  6. 6.School of Physics and AstronomyUniversity of SouthamptonSouthamptonU.K.
  7. 7.Department of Mathematics and StatisticsYork UniversityTorontoCanada
  8. 8.CSSMUniversity of AdelaideAdelaideAustralia
  9. 9.CERN, Theoretical Physics Department, CERNGenevaSwitzerland

Personalised recommendations