Advertisement

The Schwinger mechanism in (Anti) de Sitter spacetimes

  • Prasant SamantrayEmail author
Open Access
Regular Article - Theoretical Physics

Abstract

We present a short and novel derivation of the Schwinger mechanism for particle pair production in 1 + 1 dimensional de Sitter and Anti de Sitter spacetimes. We work directly in the flat embedding space and derive the pair production rates in these spacetimes via instanton methods. The derivation is manifestly coordinate independent, and also lends support to the possible deep connection between two conceptually disparate quantum phenomena — Schwinger effect and the Davies-Unruh effect.

Keywords

2D Gravity Solitons Monopoles and Instantons 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J. Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. D 82 (1951) 664.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A.R. Brown, Schwinger pair production at nonzero temperatures or in compact directions, arXiv:1512.05716 [INSPIRE].
  3. [3]
    R.-G. Cai and S.P. Kim, One-Loop Effective Action and Schwinger Effect in (Anti-) de Sitter Space, JHEP 09 (2014) 072 [arXiv:1407.4569] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    M.B. Fröb et al., Schwinger effect in de Sitter space, JCAP 04 (2014) 009 [arXiv:1401.4137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    S.P. Kim, H.K. Lee and Y. Yoon, Thermal Interpretation of Schwinger Effect in Near-Extremal RN Black Hole, arXiv:1503.00218 [INSPIRE].
  6. [6]
    B. Pioline and J. Troost, Schwinger pair production in AdS2, JHEP 03 (2005) 043 [hep-th/0501169] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    P.C.W. Davies, Scalar particle production in Schwarzschild and Rindler metrics, J. Phys. A 8 (1975) 609 [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Garriga, Nucleation rates in flat and curved space, Phys. Rev. D 49 (1994) 6327 [hep-ph/9308280] [INSPIRE].
  9. [9]
    J.D. Brown and C. Teitelboim, Neutralization of the Cosmological Constant by Membrane Creation, Nucl. Phys. B 297 (1988) 787 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    S. Deser and O. Levin, Accelerated detectors and temperature in (anti)-de Sitter spaces, Class. Quant. Grav. 14 (1997) L163 [gr-qc/9706018] [INSPIRE].
  11. [11]
    D. Kothawala, Duality of force laws and Conformal transformations, Am. J. Phys. 79 (2011) 6 [arXiv:1010.2238] [INSPIRE].CrossRefGoogle Scholar
  12. [12]
    M. Parikh and P. Samantray, Rindler-AdS/CFT, arXiv:1211.7370 [INSPIRE].
  13. [13]
    S. Singh and P. Samantray, Schwinger Mechanism in Schwarzschild Spacetime, in preparation.Google Scholar
  14. [14]
    N.P. Myhrvold, Thermal Radiation From Accelerated Electrons, Annals Phys. 160 (1985) 102 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    R. Parentani and S. Massar, The Schwinger mechanism, the Unruh effect and the production of accelerated black holes, Phys. Rev. D 55 (1997) 3603 [hep-th/9603057] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S.P. Gavrilov and D.M. Gitman, Vacuum instability in external fields, Phys. Rev. D 53 (1996) 7162 [hep-th/9603152] [INSPIRE].ADSGoogle Scholar
  17. [17]
    W. Fischler, P.H. Nguyen, J.F. Pedraza and W. Tangarife, Holographic Schwinger effect in de Sitter space, Phys. Rev. D 91 (2015) 086015 [arXiv:1411.1787] [INSPIRE].ADSMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Centre of AstronomyIndian Institute of Technology IndoreSimrolIndia

Personalised recommendations