Generalized higher gauge theory

  • Patricia Ritter
  • Christian Sämann
  • Lennart Schmidt
Open Access
Regular Article - Theoretical Physics

Abstract

We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid T MTM over some manifold M and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.

Keywords

Differential and Algebraic Geometry Gauge Symmetry M-Theory 

References

  1. [1]
    J.C. Baez and J. Huerta, An invitation to higher gauge theory, Gen. Rel. Grav. 43 (2011) 2335 [arXiv:1003.4485] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    C. Sämann and M. Wolf, Non-abelian tensor multiplet equations from twistor space, Commun. Math. Phys. 328 (2014) 527 [arXiv:1205.3108] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    C. Sämann and M. Wolf, Six-dimensional superconformal field theories from principal 3-bundles over twistor space, Lett. Math. Phys. 104 (2014) 1147 [arXiv:1305.4870] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    B. Jurčo, C. Sämann and M. Wolf, Semistrict higher gauge theory, JHEP 04 (2015) 087 [arXiv:1403.7185] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    S. Palmer and C. Sämann, Self-dual string and higher instanton solutions, Phys. Rev. D 89 (2014) 065036 [arXiv:1312.5644] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Baez and U. Schreiber, Higher gauge theory: 2-connections on 2-bundles, hep-th/0412325 [INSPIRE].
  7. [7]
    I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory, J. Math. Phys. 54 (2013) 032303 [arXiv:1212.1736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    A. Deser and J. Stasheff, Even symplectic supermanifolds and double field theory, Commun. Math. Phys. 339 (2015) 1003 [arXiv:1406.3601] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-algebras, JHEP 08 (2010) 083 [arXiv:1007.2982] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    M.F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M. Bojowald, A. Kotov and T. Strobl, Lie algebroid morphisms, Poisson σ-models and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005) 400 [math/0406445] [INSPIRE].
  13. [13]
    A. Kotov and T. Strobl, Characteristic classes associated to Q-bundles, Int. J. Geom. Meth. Mod. Phys. 12 (2014) 1550006 [arXiv:0711.4106] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    H. Sati, U. Schreiber and J. Stasheff, L algebra connections and applications to string- and Chern-Simons n-transport, arXiv:0801.3480 [INSPIRE].
  15. [15]
    D. Fiorenza, C.L. Rogers and U. Schreiber, A higher Chern-Weil derivation of AKSZ σ-models, Int. J. Geom. Meth. Mod. Phys. 10 (2013) 1250078 [arXiv:1108.4378] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M. Grützmann and T. Strobl, General Yang-Mills type gauge theories for p-form gauge fields: from physics-based ideas to a mathematical framework or from Bianchi identities to twisted Courant algebroids, Int. J. Geom. Meth. Mod. Phys. 12 (2014) 1550009 [arXiv:1407.6759] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Quantization, poisson brackets and beyond, T. Voronov ed., Contemporary Mathematics volume 315, American mathematical Society, U.S.A. (2002), math/0203110 [INSPIRE].
  18. [18]
    P. Ritter and C. Sämann, Automorphisms of strong homotopy Lie algebras of local observables, arXiv:1507.00972 [INSPIRE].
  19. [19]
    T. Lada and J. Stasheff, Introduction to SH Lie algebras for physicists, Int. J. Theor. Phys. 32 (1993) 1087 [hep-th/9209099] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    T. Lada and M. Markl, Strongly homotopy Lie algebras, Commun. Alg. 23 (1995) 2147 [hep-th/9406095] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    M. Alexandrov, M. Kontsevich, A. Schwartz and O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A.S. Schwarz, Semiclassical approximation in Batalin-Vilkovisky formalism, Commun. Math. Phys. 158 (1993) 373 [hep-th/9210115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    P. Severa, Some title containing the words ‘homotopy’ and ‘symplectic’, e.g. this one, Trav. Math. 16 (2005) 121 [math/0105080].
  24. [24]
    D. Fiorenza, U. Schreiber and J. Stasheff, Čech cocycles for differential characteristic classes: an ∞-Lie theoretic construction, Adv. Theor. Math. Phys. 16 (2012) 149 [arXiv:1011.4735] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    R. Zucchini, AKSZ models of semistrict higher gauge theory, JHEP 03 (2013) 014 [arXiv:1112.2819] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G.A. Demessie and C. Sämann, Higher Poincaré lemma and integrability, J. Math. Phys. 56 (2015) 082902 [arXiv:1406.5342] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    A. Henriques, Integrating L -algebras, Comp. Math. 144 (2008) 1017 [math/0603563].
  29. [29]
    J.C. Baez and A.D. Lauda, Higher-dimensional algebra V: 2-groups, Th. App. Cat. 12 (2004) 423 [math/0307200].
  30. [30]
    E. Soncini and R. Zucchini, 4D semistrict higher Chern-Simons theory I, JHEP 10 (2014) 79 [arXiv:1406.2197] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    R. Zucchini, A Lie based 4-dimensional higher Chern-Simons theory, arXiv:1512.05977 [INSPIRE].
  32. [32]
    P. Ritter and C. Sämann, L -algebra models and higher Chern-Simons theories, arXiv:1511.08201 [INSPIRE].
  33. [33]
    S. Palmer and C. Sämann, M-brane models from non-abelian gerbes, JHEP 07 (2012) 010 [arXiv:1203.5757] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    C. Papageorgakis and C. Sämann, The 3-Lie algebra (2, 0) tensor multiplet and equations of motion on loop space, JHEP 05 (2011) 099 [arXiv:1103.6192] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Patricia Ritter
    • 1
  • Christian Sämann
    • 2
  • Lennart Schmidt
    • 2
  1. 1.Dipartimento di Fisica ed AstronomiaUniversità di Bologna and INFN — Sezione di BolognaBolognaItaly
  2. 2.Maxwell Institute for Mathematical Sciences, Department of MathematicsHeriot-Watt UniversityEdinburghU.K.

Personalised recommendations