Search strategies for TeV scale fermionic top partners with charge 2/3

  • Mihailo Backović
  • Thomas Flacke
  • Jeong Han KimEmail author
  • Seung J. Lee
Open Access
Regular Article - Theoretical Physics


Searches for fermionic top partners at the TeV scale will bring forward a new final state kinematic regime and event topologies, where Run I search strategies will inevitably fail. We propose concrete search strategies for singly produced charge 2/3 fermionic top partners (T ) adequate for LHC Run II. Our analysis spans over all of the T′ decay modes (i.e. tZ, th and Wb) where we present detailed discussion of the search performances, signal efficiencies and backgrounds rates. Our LHC Run II search proposals utilize signatures with large missing energy and leptons, as well as jet substructure observables for tagging of boosted heavy SM states, customized b-tagging tactics and forward jet tagging. We analyze the prospects for discovery and exclusion of T models within the framework of partially composite quarks at the LHC Run II. Our results show that the LHC Run II has good prospects for observing T models which predict single production cross section of σ T ∼ 70 − 140 (30 − 65) fb for M T = 1 (1.5) TeV respectively with 100 fb−1 of integrated luminosity, depending on the branching ratios of the T . Similarly, we find that cross sections of σ T ∼ 27 − 60 (13 − 24) fb for M T = 1 (1.5) TeV respectively can be excluded with the same amount of data. Our results are minimally model dependent and can be applied to most T models where Γ T M T .


Beyond Standard Model Technicolor and Composite Models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Z. Chacko, H.-S. Goh and R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry, Phys. Rev. Lett. 96 (2006) 231802 [hep-ph/0506256] [INSPIRE].
  2. [2]
    N. Craig, S. Knapen and P. Longhi, Neutral naturalness from orbifold Higgs models, Phys. Rev. Lett. 114 (2015) 061803 [arXiv:1410.6808] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    M. Geller and O. Telem, Holographic twin Higgs model, Phys. Rev. Lett. 114 (2015) 191801 [arXiv:1411.2974] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    G. Burdman, Z. Chacko, R. Harnik, L. de Lima and C.B. Verhaaren, Colorless top partners, a 125 GeV Higgs and the limits on naturalness, Phys. Rev. D 91 (2015) 055007 [arXiv:1411.3310] [INSPIRE].ADSGoogle Scholar
  5. [5]
    N. Craig, S. Knapen and P. Longhi, The orbifold Higgs, JHEP 03 (2015) 106 [arXiv:1411.7393] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  6. [6]
    N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the dark at the LHC, JHEP 07 (2015) 105 [arXiv:1501.05310] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Barbieri, D. Greco, R. Rattazzi and A. Wulzer, The composite twin Higgs scenario, JHEP 08 (2015) 161 [arXiv:1501.07803] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. Low, A. Tesi and L.-T. Wang, Twin Higgs mechanism and a composite Higgs boson, Phys. Rev. D 91 (2015) 095012 [arXiv:1501.07890] [INSPIRE].ADSGoogle Scholar
  9. [9]
    ATLAS collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS experiment at the LHC, JHEP 10 (2015) 054 [arXiv:1507.05525] [INSPIRE].
  10. [10]
    C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics, JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].
  11. [11]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2014-036, CERN, Geneva Switzerland (2014).
  13. [13]
    ATLAS collaboration, Search for pair and single production of new heavy quarks that decay to a Z boson and a third-generation quark in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 104 [arXiv:1409.5500] [INSPIRE].
  14. [14]
    ATLAS collaboration, Search for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 08 (2015) 105 [arXiv:1505.04306] [INSPIRE].
  15. [15]
    ATLAS collaboration, Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 10 (2015) 150 [arXiv:1504.04605] [INSPIRE].
  16. [16]
    CMS collaboration, Inclusive search for a vector-like T quark with charge 2/3 in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 729 (2014) 149 [arXiv:1311.7667] [INSPIRE].
  17. [17]
    CMS collaboration, Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure, JHEP 06 (2015) 080 [arXiv:1503.01952] [INSPIRE].
  18. [18]
    CMS collaboration, Search for vector-like top quark partners produced in association with Higgs bosons in the diphoton final state, CMS-PAS-B2G-14-003, CERN, Geneva Switzerland (2014).
  19. [19]
    CMS collaboration, Search for pair-produced vector-like top quark partners decaying to bW in the fully hadronic channel using jet substructure at 8 TeV, CMS-PAS-B2G-12-013, CERN, Geneva Switzerland (2012).
  20. [20]
    CMS collaboration, Search for vector-like quarks in final states with a single lepton and jets in pp collisions at \( \sqrt{s}=8 \) TeV, CMS-PAS-B2G-12-017, CERN, Geneva Switzerland (2012).
  21. [21]
    J.A. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    A. De Simone, O. Matsedonskyi, R. Rattazzi and A. Wulzer, A first top partner hunters guide, JHEP 04 (2013) 004 [arXiv:1211.5663] [INSPIRE].CrossRefGoogle Scholar
  23. [23]
    A. Azatov, M. Salvarezza, M. Son and M. Spannowsky, Boosting top partner searches in composite Higgs models, Phys. Rev. D 89 (2014) 075001 [arXiv:1308.6601] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M. Backović, T. Flacke, S.J. Lee and G. Perez, LHC top partner searches beyond the 2 TeV mass region, JHEP 09 (2015) 022 [arXiv:1409.0409] [INSPIRE].CrossRefGoogle Scholar
  25. [25]
    O. Matsedonskyi, G. Panico and A. Wulzer, On the interpretation of top partners searches, JHEP 12 (2014) 097 [arXiv:1409.0100] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    M. Backović, T. Flacke, J.H. Kim and S.J. Lee, Discovering heavy new physics in boosted Z channels: Z + vs Z\( \nu \overline{\nu} \), Phys. Rev. D 92 (2015) 011701 [arXiv:1501.07456] [INSPIRE].ADSGoogle Scholar
  27. [27]
    N. Vignaroli, Discovering the composite Higgs through the decay of a heavy fermion, JHEP 07 (2012) 158 [arXiv:1204.0468] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    N. Vignaroli, Early discovery of top partners and test of the Higgs nature, Phys. Rev. D 86 (2012) 075017 [arXiv:1207.0830] [INSPIRE].ADSGoogle Scholar
  29. [29]
    J. Reuter and M. Tonini, Top partner discovery in the TtZ channel at the LHC, JHEP 01 (2015) 088 [arXiv:1409.6962] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    S. Gopalakrishna, T. Mandal, S. Mitra and G. Moreau, LHC signatures of warped-space vectorlike quarks, JHEP 08 (2014) 079 [arXiv:1306.2656] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].
  32. [32]
    G. Cacciapaglia, A. Deandrea, N. Gaur, D. Harada, Y. Okada and L. Panizzi, Interplay of vector-like top partner multiplets in a realistic mixing set-up, JHEP 09 (2015) 012 [arXiv:1502.00370] [INSPIRE].CrossRefGoogle Scholar
  33. [33]
    K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].
  34. [34]
    R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
  35. [35]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  36. [36]
    O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    N. Arkani-Hamed, A.G. Cohen, E. Katz, A.E. Nelson, T. Gregoire and J.G. Wacker, The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].
  38. [38]
    N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, JHEP 07 (2002) 034 [hep-ph/0206021] [INSPIRE].
  39. [39]
    I. Antoniadis, A possible new dimension at a few TeV, Phys. Lett. B 246 (1990) 377 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    I. Antoniadis, K. Benakli and M. Quirós, Finite Higgs mass without supersymmetry, New J. Phys. 3 (2001) 20 [hep-th/0108005] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  41. [41]
    C. Csáki, C. Grojean, J. Hubisz, Y. Shirman and J. Terning, Fermions on an interval: quark and lepton masses without a Higgs, Phys. Rev. D 70 (2004) 015012 [hep-ph/0310355] [INSPIRE].
  42. [42]
    Y. Hosotani, S. Noda and K. Takenaga, Dynamical gauge-Higgs unification in the electroweak theory, Phys. Lett. B 607 (2005) 276 [hep-ph/0410193] [INSPIRE].
  43. [43]
    D. Choudhury, T.M.P. Tait and C.E.M. Wagner, Beautiful mirrors and precision electroweak data, Phys. Rev. D 65 (2002) 053002 [hep-ph/0109097] [INSPIRE].
  44. [44]
    G. Panico, E. Ponton, J. Santiago and M. Serone, Dark matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Agashe, R. Contino, L. Da Rold and A. Pomarol, A custodial symmetry for \( Zb\overline{b} \), Phys. Lett. B 641 (2006) 62 [hep-ph/0605341] [INSPIRE].
  46. [46]
    R.S. Chivukula, R. Foadi and E.H. Simmons, Patterns of custodial isospin violation from a composite top, Phys. Rev. D 84 (2011) 035026 [arXiv:1105.5437] [INSPIRE].ADSGoogle Scholar
  47. [47]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].
  48. [48]
    G. Cacciapaglia, A. Deandrea, D. Harada and Y. Okada, Bounds and decays of new heavy vector-like top partners, JHEP 11 (2010) 159 [arXiv:1007.2933] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  49. [49]
    Y. Okada and L. Panizzi, LHC signatures of vector-like quarks, Adv. High Energy Phys. 2013 (2013) 364936 [arXiv:1207.5607] [INSPIRE].CrossRefGoogle Scholar
  50. [50]
    M. Buchkremer, G. Cacciapaglia, A. Deandrea and L. Panizzi, Model independent framework for searches of top partners, Nucl. Phys. B 876 (2013) 376 [arXiv:1305.4172] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  51. [51]
    D. Pappadopulo, A. Thamm, R. Torre and A. Wulzer, Heavy vector triplets: bridging theory and data, JHEP 09 (2014) 060 [arXiv:1402.4431] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  53. [53]
    G. Cacciapaglia, H. Cai, T. Flacke, S.J. Lee, A. Parolini and H. Serôdio, Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage, JHEP 06 (2015) 085 [arXiv:1501.03818] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    LHC Higgs Cross section Working Group collaboration, J.R. Andersen et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  55. [55]
    L. Basso and J. Andrea, Discovery potential for T tZ in the trilepton channel at the LHC, JHEP 02 (2015) 032 [arXiv:1411.7587] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    N.G. Ortiz, J. Ferrando, D. Kar and M. Spannowsky, Reconstructing singly produced top partners in decays to Wb, Phys. Rev. D 90 (2014) 075009 [arXiv:1403.7490] [INSPIRE].ADSGoogle Scholar
  57. [57]
    J. Li, D. Liu and J. Shu, Towards the fate of natural composite Higgs model through single t search at the 8 TeV LHC, JHEP 11 (2013) 047 [arXiv:1306.5841] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    CMS collaboration, Search for top-Higgs resonances in all-hadronic final states using jet substructure methods, CMS-PAS-B2G-14-002, CERN, Geneva Switzerland (2014).
  59. [59]
    M. Backović, T. Flacke, J.H. Kim and S.J. Lee, Boosted event topologies from TeV scale light quark composite partners, JHEP 04 (2015) 082 [arXiv:1410.8131] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].
  61. [61]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
  63. [63]
    M.L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
  64. [64]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    L.G. Almeida, O. Erdogan, J. Juknevich, S.J. Lee, G. Perez and G. Sterman, Three-particle templates for a boosted Higgs boson, Phys. Rev. D 85 (2012) 114046 [arXiv:1112.1957] [INSPIRE].ADSGoogle Scholar
  68. [68]
    M. Backovic, J. Juknevich and G. Perez, Boosting the standard model Higgs signal with the template overlap method, JHEP 07 (2013) 114 [arXiv:1212.2977] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Schlaffer, M. Spannowsky, M. Takeuchi, A. Weiler and C. Wymant, Boosted Higgs shapes, Eur. Phys. J. C 74 (2014) 3120 [arXiv:1405.4295] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    S.D. Ellis, J. Huston, K. Hatakeyama, P. Loch and M. Tonnesmann, Jets in hadron-hadron collisions, Prog. Part. Nucl. Phys. 60 (2008) 484 [arXiv:0712.2447] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    A. Abdesselam et al., Boosted objects: a probe of beyond the standard model physics, Eur. Phys. J. C 71 (2011) 1661 [arXiv:1012.5412] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G.P. Salam, Towards jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].CrossRefGoogle Scholar
  74. [74]
    L.G. Almeida, R. Alon and M. Spannowsky, Structure of fat jets at the Tevatron and beyond, Eur. Phys. J. C 72 (2012) 2113 [arXiv:1110.3684] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    T. Plehn and M. Spannowsky, Top tagging, J. Phys. G 39 (2012) 083001 [arXiv:1112.4441] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    A. Altheimer et al., Jet substructure at the Tevatron and LHC: new results, new tools, new benchmarks, J. Phys. G 39 (2012) 063001 [arXiv:1201.0008] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    D.E. Soper and M. Spannowsky, Finding physics signals with shower deconstruction, Phys. Rev. D 84 (2011) 074002 [arXiv:1102.3480] [INSPIRE].ADSGoogle Scholar
  78. [78]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].ADSGoogle Scholar
  79. [79]
    M. Jankowiak and A.J. Larkoski, Jet substructure without trees, JHEP 06 (2011) 057 [arXiv:1104.1646] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    D. Krohn, J. Thaler and L.-T. Wang, Jet trimming, JHEP 02 (2010) 084 [arXiv:0912.1342] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    S.D. Ellis, C.K. Vermilion and J.R. Walsh, Recombination algorithms and jet substructure: pruning as a tool for heavy particle searches, Phys. Rev. D 81 (2010) 094023 [arXiv:0912.0033] [INSPIRE].ADSGoogle Scholar
  82. [82]
    M. Backović and J. Juknevich, TemplateTagger v1.0.0: a template matching tool for jet substructure, Comput. Phys. Commun. 185 (2014) 1322 [arXiv:1212.2978] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Backovic, O. Gabizon, J. Juknevich, G. Perez and Y. Soreq, Measuring boosted tops in semi-leptonic \( t\overline{t} \) events for the standard model and beyond, JHEP 04 (2014) 176 [arXiv:1311.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    A. Hook, M. Jankowiak and J.G. Wacker, Jet dipolarity: top tagging with color flow, JHEP 04 (2012) 007 [arXiv:1102.1012] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J. Thaler and K. Van Tilburg, Identifying boosted objects with N -subjettiness, JHEP 03 (2011) 015 [arXiv:1011.2268] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Thaler and K. Van Tilburg, Maximizing boosted top identification by minimizing N -subjettiness, JHEP 02 (2012) 093 [arXiv:1108.2701] [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J. Thaler and L.-T. Wang, Strategies to identify boosted tops, JHEP 07 (2008) 092 [arXiv:0806.0023] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    L.G. Almeida, S.J. Lee, G. Perez, G.F. Sterman, I. Sung and J. Virzi, Substructure of high-p T jets at the LHC, Phys. Rev. D 79 (2009) 074017 [arXiv:0807.0234] [INSPIRE].ADSGoogle Scholar
  89. [89]
    L.G. Almeida, S.J. Lee, G. Perez, G. Sterman and I. Sung, Template overlap method for massive jets, Phys. Rev. D 82 (2010) 054034 [arXiv:1006.2035] [INSPIRE].ADSGoogle Scholar
  90. [90]
    V. Rentala, W. Shepherd and T.M.P. Tait, Tagging boosted W s with wavelets, JHEP 08 (2014) 042 [arXiv:1404.1929] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J. Cogan, M. Kagan, E. Strauss and A. Schwarztman, Jet-images: computer vision inspired techniques for jet tagging, JHEP 02 (2015) 118 [arXiv:1407.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft drop, JHEP 05 (2014) 146 [arXiv:1402.2657] [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    ATLAS collaboration, b-tagging in dense environments, ATL-PHYS-PUB-2014-014, CERN, Geneva Switzerland (2014).
  94. [94]
    D.E. Kaplan, K. Rehermann, M.D. Schwartz and B. Tweedie, Top tagging: a method for identifying boosted hadronically decaying top quarks, Phys. Rev. Lett. 101 (2008) 142001 [arXiv:0806.0848] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    R. Alon, E. Duchovni, G. Perez, A.P. Pranko and P.K. Sinervo, A data-driven method of pile-up correction for the substructure of massive jets, Phys. Rev. D 84 (2011) 114025 [arXiv:1101.3002] [INSPIRE].ADSGoogle Scholar
  96. [96]
    ATLAS collaboration, ATLAS measurements of the properties of jets for boosted particle searches, Phys. Rev. D 86 (2012) 072006 [arXiv:1206.5369] [INSPIRE].
  97. [97]
    CMS collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS, 2011 JINST 6 P11002 [arXiv:1107.4277] [INSPIRE].
  98. [98]
    M. Cacciari and G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 (2008) 119 [arXiv:0707.1378] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. C 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Mihailo Backović
    • 1
  • Thomas Flacke
    • 2
  • Jeong Han Kim
    • 3
    • 4
    Email author
  • Seung J. Lee
    • 2
    • 5
  1. 1.Center for Cosmology, Particle Physics and Phenomenology — CP3Universite Catholique de LouvainLouvain-la-neuveBelgium
  2. 2.Department of PhysicsKorea UniversitySeoulKorea
  3. 3.Department of PhysicsKorea Advanced Institute of Science and TechnologyYuseong-guKorea
  4. 4.Center for Theoretical Physics of the Universe and Center for Axion and Precision Physics Research, IBSDaejeonKorea
  5. 5.School of PhysicsKorea Institute for Advanced StudySeoulKorea

Personalised recommendations