Entropy for gravitational Chern-Simons terms by squashed cone method

  • Wu-Zhong GuoEmail author
  • Rong-Xin Miao
Open Access
Regular Article - Theoretical Physics


In this paper we investigate the entropy of gravitational Chern-Simons terms for the horizon with non-vanishing extrinsic curvatures, or the holographic entanglement entropy for arbitrary entangling surface. In 3D there is no anomaly of entropy. But the original squashed cone method can not be used directly to get the correct result. For higher dimensions the anomaly of entropy would appear, still, we can not use the squashed cone method directly. That is becasuse the Chern-Simons action is not gauge invariant. To get a reasonable result we suggest two methods. One is by adding a boundary term to recover the gauge invariance. This boundary term can be derived from the variation of the Chern-Simons action. The other one is by using the Chern-Simons relation dΩ4n−1 = tr(R 2n ). We notice that the entropy of tr(R 2n ) is a total derivative locally, i.e. S = ds CS . We propose to identify s CS with the entropy of gravitational Chern-Simons terms Ω4n − 1. In the first method we could get the correct result for Wald entropy in arbitrary dimension. In the second approach, in addition to Wald entropy, we can also obtain the anomaly of entropy with non-zero extrinsic curvatures. Our results imply that the entropy of a topological invariant, such as the Pontryagin term tr(R 2n ) and the Euler density, is a topological invariant on the entangling surface.


AdS-CFT Correspondence Classical Theories of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].MathSciNetADSGoogle Scholar
  2. [2]
    S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199 [Erratum ibid. 46 (1976) 206] [INSPIRE].
  3. [3]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  4. [4]
    R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427 [gr-qc/9307038] [INSPIRE].MathSciNetzbMATHADSGoogle Scholar
  5. [5]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  6. [6]
    D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones, Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].ADSGoogle Scholar
  7. [7]
    X. Dong and R.-X. Miao, Generalized gravitational entropy from total derivative action, JHEP 12 (2015) 100 [arXiv:1510.04273] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  8. [8]
    X. Dong, Holographic entanglement entropy for general higher derivative gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].CrossRefADSGoogle Scholar
  9. [9]
    J. Camps, Generalized entropy and higher derivative gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  10. [10]
    R.-X. Miao and W.-Z. Guo, Holographic entanglement entropy for the most general higher derivative gravity, JHEP 08 (2015) 031 [arXiv:1411.5579] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  11. [11]
    R.-X. Miao, Universal terms of entanglement entropy for 6d CFTs, JHEP 10 (2015) 049 [arXiv:1503.05538] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    Y. Huang and R.-X. Miao, A note on the resolution of the entropy discrepancy, Phys. Lett. B 749 (2015) 489 [arXiv:1504.02301] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative holography, JHEP 08 (2013) 012 [arXiv:1305.6694] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher derivative gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    S.L. Dubovsky and S.M. Sibiryakov, Spontaneous breaking of Lorentz invariance, black holes and perpetuum mobile of the 2nd kind, Phys. Lett. B 638 (2006) 509 [hep-th/0603158] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  17. [17]
    T. Jacobson and A.C. Wall, Black hole thermodynamics and Lorentz symmetry, Found. Phys. 40 (2010) 1076 [arXiv:0804.2720] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  18. [18]
    R.-X. Miao, M. Li and Y.-G. Miao, Violation of the first law of black hole thermodynamics in f(T) gravity, JCAP 11 (2011) 033 [arXiv:1107.0515] [INSPIRE].CrossRefADSGoogle Scholar
  19. [19]
    S.N. Solodukhin, Holography with gravitational Chern-Simons, Phys. Rev. D 74 (2006) 024015 [hep-th/0509148] [INSPIRE].ADSGoogle Scholar
  20. [20]
    R.F. Perez, Conserved current for the Cotton tensor, black hole entropy and equivariant Pontryagin forms, Class. Quant. Grav. 27 (2010) 135015 [arXiv:1004.3161] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. [21]
    P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    M.-I. Park, BTZ black hole with gravitational Chern-Simons: thermodynamics and statistical entropy, Phys. Rev. D 77 (2008) 026011 [hep-th/0608165] [INSPIRE].ADSGoogle Scholar
  23. [23]
    O. Mišković and R. Olea, Background-independent charges in topologically massive gravity, JHEP 12 (2009) 046 [arXiv:0909.2275] [INSPIRE].MathSciNetADSGoogle Scholar
  24. [24]
    P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  25. [25]
    Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav. 24 (2007) 737 [hep-th/0611141] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  26. [26]
    L. Bonora, M. Cvitan, P. Dominis Prester, S. Pallua and I. Smolic, Gravitational Chern-Simons Lagrangians and black hole entropy, JHEP 07 (2011) 085 [arXiv:1104.2523] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  27. [27]
    L. Bonora, M. Cvitan, P.D. Prester, S. Pallua and I. Smolic, Gravitational Chern-Simons terms and black hole entropy. Global aspects, JHEP 10 (2012) 077 [arXiv:1207.6969] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  28. [28]
    K. Jensen, R. Loganayagam and A. Yarom, Anomaly inflow and thermal equilibrium, JHEP 05 (2014) 134 [arXiv:1310.7024] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP 05 (2014) 110 [arXiv:1311.2935] [INSPIRE].CrossRefADSGoogle Scholar
  30. [30]
    T. Azeyanagi, R. Loganayagam, G.S. Ng and M.J. Rodriguez, Holographic thermal helicity, JHEP 08 (2014) 040 [arXiv:1311.2940] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    T. Azeyanagi, R. Loganayagam, G.S. Ng and M.J. Rodriguez, Covariant Noether charge for higher dimensional Chern-Simons terms, JHEP 05 (2015) 041 [arXiv:1407.6364] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  32. [32]
    T. Azeyanagi, R. Loganayagam and G.S. Ng, Anomalies, Chern-Simons terms and black hole entropy, JHEP 09 (2015) 121 [arXiv:1505.02816] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  33. [33]
    S.N. Solodukhin, Holographic description of gravitational anomalies, JHEP 07 (2006) 003 [hep-th/0512216] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  34. [34]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982) 372 [Erratum ibid. 185 (1988) 406] [Erratum ibid. 281 (2000) 409] [INSPIRE].
  35. [35]
    A. Castro, S. Detournay, N. Iqbal and E. Perlmutter, Holographic entanglement entropy and gravitational anomalies, JHEP 07 (2014) 114 [arXiv:1405.2792] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    J.-R. Sun, Note on Chern-Simons term correction to holographic entanglement entropy, JHEP 05 (2009) 061 [arXiv:0810.0967] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  37. [37]
    A. Schwimmer and S. Theisen, Entanglement entropy, trace anomalies and holography, Nucl. Phys. B 801 (2008) 1 [arXiv:0802.1017] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  38. [38]
    T. Azeyanagi, R. Loganayagam and G.S. Ng, Holographic entanglement for Chern-Simons terms, arXiv:1507.02298 [INSPIRE].
  39. [39]
    L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].CrossRefADSGoogle Scholar
  40. [40]
    J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].MathSciNetCrossRefzbMATHADSGoogle Scholar
  41. [41]
    W.-Z. Guo, S. He and J. Tao, Note on entanglement temperature for low thermal excited states in higher derivative gravity, JHEP 08 (2013) 050 [arXiv:1305.2682] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Theoretical Physics, Institute of Theoretical PhysicsChinese Academy of ScienceBeijingP.R. China
  2. 2.Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan
  3. 3.Max Planck Institute for Gravitational Physics (Albert Einstein Institute)GolmGermany

Personalised recommendations