One loop partition function of three-dimensional flat gravity

  • G. Barnich
  • H. A. González
  • A. Maloney
  • B. Oblak
Open Access
Regular Article - Theoretical Physics


In this note we point out that the one-loop partition function of threedimensional flat gravity, computed along the lines originally developed for the anti-de Sitter case, reproduces characters of the BMS3 group.


Conformal and W Symmetry Space-Time Symmetries Classical Theories of Gravity Topological Field Theories 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  2. [2]
    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Giombi, A. Maloney and X. Yin, One-loop partition functions of 3D gravity, JHEP 08 (2008) 007 [arXiv:0804.1773] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    J.R. David, M.R. Gaberdiel and R. Gopakumar, The heat kernel on AdS 3 and its applications, JHEP 04 (2010) 125 [arXiv:0911.5085] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    A. Ashtekar, J. Bicak and B.G. Schmidt, Asymptotic structure of symmetry reduced general relativity, Phys. Rev. D 55 (1997) 669 [gr-qc/9608042] [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    G. Barnich and G. Compere, Classical central extension for asymptotic symmetries at null infinity in three spacetime dimensions, Class. Quant. Grav. 24 (2007) F15 [gr-qc/0610130] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    B. Oblak, Characters of the BMS group in three dimensions, arXiv:1502.03108 [INSPIRE].
  9. [9]
    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP 06 (2014) 129 [arXiv:1403.5803] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP 03 (2015) 033 [arXiv:1502.00010] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    S.M. Christensen and M.J. Duff, Quantizing gravity with a cosmological constant, Nucl. Phys. B 170 (1980) 480 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP 10 (2012) 095 [arXiv:1208.4371] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    A. Bagchi, S. Detournay, R. Fareghbal and J. Simón, Holography of 3D flat cosmological horizons, Phys. Rev. Lett. 110 (2013) 141302 [arXiv:1208.4372] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    G.T. Horowitz and A.R. Steif, Singular string solutions with nonsingular initial data, Phys. Lett. B 258 (1991) 91 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    A. Bagchi, S. Detournay, D. Grumiller and J. Simon, Cosmic evolution from phase transition of three-dimensional flat space, Phys. Rev. Lett. 111 (2013) 181301 [arXiv:1305.2919] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat space, Annals Phys. 152 (1984) 220 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    K. Ezawa, Transition amplitude in (2 + 1)-dimensional Chern-Simons gravity on a torus, Int. J. Mod. Phys. A 9 (1994) 4727 [hep-th/9305170] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    L. Cornalba and M.S. Costa, A new cosmological scenario in string theory, Phys. Rev. D 66 (2002) 066001 [hep-th/0203031] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    L. Cornalba and M.S. Costa, Time dependent orbifolds and string cosmology, Fortsch. Phys. 52 (2004) 145 [hep-th/0310099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. Barnich, A. Gomberoff and H.A. Gonzalez, The flat limit of three dimensional asymptotically anti-de Sitter spacetimes, Phys. Rev. D 86 (2012) 024020 [arXiv:1204.3288] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • G. Barnich
    • 1
  • H. A. González
    • 1
  • A. Maloney
    • 2
  • B. Oblak
    • 1
  1. 1.Physique Théorique et MathématiqueUniversité Libre de Bruxelles and International Solvay InstitutesBruxellesBelgium
  2. 2.McGill Physics DepartmentMontréalCanada

Personalised recommendations