Advertisement

Form factors of descendant operators: reduction to perturbed M (2, 2s + 1) models

Open Access
Regular Article - Theoretical Physics

Abstract

In the framework of the algebraic approach to form factors in two-dimensional integrable models of quantum field theory we consider the reduction of the sine-Gordon model to the Φ13-perturbation of minimal conformal models of the M (2, 2s + 1) series. We find in an algebraic form the condition of compatibility of local operators with the reduction. We propose a construction that make it possible to obtain reduction compatible local operators in terms of screening currents. As an application we obtain exact multiparticle form factors for the compatible with the reduction conserved currents T±2k, Θ±(2k−2), which correspond to the spin ±(2k − 1) integrals of motion, for any positive integer k. Furthermore, we obtain all form factors of the operators T2k T−2l, which generalize the famous \( T\overline{T} \) operator. The construction is analytic in the s parameter and, therefore, makes sense in the sine-Gordon theory.

Keywords

Integrable Field Theories Exact S-Matrix Quantum Groups 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Feigin and M. Lashkevich, Form factors of descendant operators: free field construction and reflection relations, J. Phys. A 42 (2009) 304014 [arXiv:0812.4776] [INSPIRE].MathSciNetMATHGoogle Scholar
  2. [2]
    O. Alekseev and M. Lashkevich, Form factors of descendant operators: A L − 1(1) affine Toda theory, JHEP 07 (2010) 095 [arXiv:0912.5225] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  3. [3]
    M. Lashkevich and Y. Pugai, On form factors and Macdonald polynomials, JHEP 09 (2013) 095 [arXiv:1305.1674] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    M. Lashkevich and Y. Pugai, Form factors in sinh- and sine-Gordon models, deformed Virasoro algebra, Macdonald polynomials and resonance identities, Nucl. Phys. B 877 (2013) 538 [arXiv:1307.0243] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    M. Lashkevich and Y. Pugai, Form factors of descendant operators: resonance identities in the sinh-Gordon model, JHEP 12 (2014) 112 [arXiv:1411.1374] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A.B. Zamolodchikov, Higher Order Integrals of Motion in Two-Dimensional Models of the Field Theory with a Broken Conformal Symmetry, JETP Lett. 46 (1987) 160 [INSPIRE].ADSMathSciNetGoogle Scholar
  7. [7]
    A.B. Zamolodchikov, Integrable field theory from conformal field theory, Adv. Stud. Pure Math. 19 (1989) 641 [INSPIRE].MathSciNetMATHGoogle Scholar
  8. [8]
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    Al.B. Zamolodchikov, Two-point correlation function in scaling Lee-Yang model, Nucl. Phys. B 348 (1991) 619 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    V.A. Belavin and O.V. Miroshnichenko, Correlation functions of descendants in the scaling Lee-Yang model, JETP Lett. 82 (2005) 679 [hep-th/0511128] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V.A. Fateev, V.V. Postnikov and Y.P. Pugai, On scaling fields in Z N Ising models, JETP Lett. 83 (2006) 172 [hep-th/0601073] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    V.A. Fateev and Y.P. Pugai, Correlation functions of disorder fields and parafermionic currents in Z N Ising models, J. Phys. A 42 (2009) 304013 [arXiv:0909.3347] [INSPIRE].MATHGoogle Scholar
  13. [13]
    F.A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Adv. Ser. Math. Phys. 14 (1992) 1.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    A.A. Belavin, V.A. Belavin, A.V. Litvinov, Y.P. Pugai and Al.B. Zamolodchikov, On correlation functions in the perturbed minimal models M 2,2n+1, Nucl. Phys. B 676 (2004) 587 [hep-th/0309137] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    S.L. Lukyanov, Free field representation for massive integrable models, Commun. Math. Phys. 167 (1995) 183 [hep-th/9307196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    S.L. Lukyanov, Form factors of exponential fields in the sine-Gordon model, Mod. Phys. Lett. A 12 (1997) 2543 [hep-th/9703190] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    Vl.S. Dotsenko and V.A. Fateev, Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models, Nucl. Phys. B 240 (1984) 312 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.L. Cardy and G. Mussardo, Form factors of Descendent Operators in Perturbed Conformal Field Theories, Nucl. Phys. B 340 (1990) 387 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    O. Babelon, D. Bernard and F.A. Smirnov, Null vectors in integrable field theory, Commun. Math. Phys. 186 (1997) 601 [hep-th/9606068] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    H. Babujian and M. Karowski, Sine-Gordon breather form factors and quantum field equations, J. Phys. A 35 (2002) 9081 [hep-th/0204097] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  21. [21]
    H. Babujian and M. Karowski, Exact form factors for the scaling Z N -Ising and the affine A N −1 -Toda quantum field theories, Phys. Lett. B 575 (2003) 144 [hep-th/0309018] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  22. [22]
    G. Delfino and G. Niccoli, Matrix elements of the operator \( T\overline{T} \) in integrable quantum field theory, Nucl. Phys. B 707 (2005) 381 [hep-th/0407142] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    G. Delfino and G. Niccoli, Form factors of descendant operators in the massive Lee-Yang model, J. Stat. Mech. (2005) P04004 [hep-th/0501173] [INSPIRE].
  24. [24]
    G. Delfino and G. Niccoli, The composite operator \( T\overline{T} \) in sinh-Gordon and a series of massive minimal models, JHEP 05 (2006) 035 [hep-th/0602223] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett. B 311 (1993) 193 [hep-th/9306044] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    F.A. Smirnov, Counting the local fields in SG theory, Nucl. Phys. B 453 (1995) 807 [hep-th/9501059] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama, Form factors and action of \( {\mathrm{U}}_{\sqrt{-1}}\left(\tilde{s}{l}_2\right) \) on-cycles, Commun. Math. Phys. 245 (2004) 551 [math/0305323] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    G. Delfino and G. Niccoli, Isomorphism of critical and off-critical operator spaces in two-dimensional quantum field theory, Nucl. Phys. B 799 (2008) 364 [arXiv:0712.2165] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    H. Boos, M. Jimbo, T. Miwa, F. Smirnov and Y. Takeyama, Hidden Grassmann structure in the XXZ model, Commun. Math. Phys. 272 (2007) 263 [hep-th/0606280] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    M. Jimbo, T. Miwa and F. Smirnov, Hidden Grassmann structure in the XXZ model V: sine-Gordon model, Lett. Math. Phys. 96 (2011) 325 [arXiv:1007.0556] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    M. Jimbo, T. Miwa and F. Smirnov, Fermionic structure in the sine-Gordon model: form factors and null-vectors, Nucl. Phys. B 852 (2011) 390 [arXiv:1105.6209] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    A. LeClair, Restricted sine-Gordon theory and the minimal conformal series, Phys. Lett. B 230 (1989) 103 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    F.A. Smirnov, Reductions of the sine-Gordon model as a perturbation of minimal models of conformal field theory, Nucl. Phys. B 337 (1990) 156 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    N. Reshetikhin and F. Smirnov, Hidden Quantum Group Symmetry and Integrable Perturbations of Conformal Field Theories, Commun. Math. Phys. 131 (1990) 157 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    T. Eguchi and S.-K. Yang, Sine-Gordon theory at rational values of the coupling constant and minimal conformal models, Phys. Lett. B 235 (1990) 282 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.L. Lukyanov and A.B. Zamolodchikov, Exact expectation values of local fields in quantum sine-Gordon model, Nucl. Phys. B 493 (1997) 571 [hep-th/9611238] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
  38. [38]
    V. Fateev, S.L. Lukyanov, A.B. Zamolodchikov and Al.B. Zamolodchikov, Expectation values of local fields in Bullough-Dodd model and integrable perturbed conformal field theories, Nucl. Phys. B 516 (1998) 652 [hep-th/9709034] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    O. Alekseev, Form factors in the Bullough-Dodd related models: The Ising model in a magnetic field, JETP Lett. 95 (2012) 201 [arXiv:1106.4758] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  40. [40]
    O. Alekseev, Form factors of descendant operators in the Bullough-Dodd model, JHEP 07 (2013) 112 [arXiv:1210.2818] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Landau Institute for Theoretical PhysicsChernogolovkaRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia
  3. 3.Kharkevich Institute for Information Transmission ProblemsMoscowRussia

Personalised recommendations