Observable effects of general new scalar particles

  • J. de Blas
  • M. Chala
  • M. Pérez-Victoria
  • J. Santiago
Open Access
Regular Article - Theoretical Physics

Abstract

We classify all possible new scalar particles that can have renormalizable linear couplings to Standard Model fields and therefore be singly produced at colliders. We show that this classification exhausts the list of heavy scalar particles that contribute at the tree level to the Standard Model effective Lagrangian to dimension six. We compute this effective Lagrangian for a general scenario with an arbitrary number of new scalar particles and obtain flavor-preserving constraints on their couplings and masses. This completes the tree-level matching of the coefficients of dimension five and six operators in the effective Lagrangian to arbitrary extensions of the Standard Model.

Keywords

Beyond Standard Model Phenomenological Models 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Effective description of quark mixing, Phys. Lett. B 492 (2000) 98 [hep-ph/0007160] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    A. Pomarol and F. Riva, Towards the Ultimate SM Fit to Close in on Higgs Physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].CrossRefADSGoogle Scholar
  5. [5]
    F. del Aguila, M. Pérez-Victoria and J. Santiago, Observable contributions of new exotic quarks to quark mixing, JHEP 09 (2000) 011 [hep-ph/0007316] [INSPIRE].CrossRefGoogle Scholar
  6. [6]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Effects of new leptons in Electroweak Precision Data, Phys. Rev. D 78 (2008) 013010 [arXiv:0803.4008] [INSPIRE].ADSGoogle Scholar
  7. [7]
    F. del Aguila, J. de Blas and M. Pérez-Victoria, Electroweak Limits on General New Vector Bosons, JHEP 09 (2010) 033 [arXiv:1005.3998] [INSPIRE].CrossRefGoogle Scholar
  8. [8]
    V. Silveira and A. Zee, Scalar Phantoms, Phys. Lett. B 161 (1985) 136 [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    J.F. Nieves, Baryon and Lepton Number Nonconserving Processes and Intermediate Mass Scales, Nucl. Phys. B 189 (1981) 182 [INSPIRE].CrossRefADSGoogle Scholar
  10. [10]
    W. Buchmüller, R. Ruckl and D. Wyler, Leptoquarks in Lepton-Quark Collisions, Phys. Lett. B 191 (1987) 442 [Erratum ibid. B 448 (1999) 320] [INSPIRE].
  11. [11]
    E. Ma, M. Raidal and U. Sarkar, Probing the exotic particle content beyond the standard model, Eur. Phys. J. C 8 (1999) 301 [hep-ph/9808484] [INSPIRE].CrossRefADSGoogle Scholar
  12. [12]
    E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal Matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    T. Han, I. Lewis and Z. Liu, Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology, JHEP 12 (2010) 085 [arXiv:1010.4309] [INSPIRE].CrossRefADSGoogle Scholar
  14. [14]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\overline{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].CrossRefADSGoogle Scholar
  15. [15]
    B. Grinstein, A.L. Kagan, J. Zupan and M. Trott, Flavor Symmetric Sectors and Collider Physics, JHEP 10 (2011) 072 [arXiv:1108.4027] [INSPIRE].CrossRefADSGoogle Scholar
  16. [16]
    W. Skiba, TASI Lectures on Effective Field Theory and Precision Electroweak Measurements, arXiv:1006.2142 [INSPIRE].
  17. [17]
    Z.U. Khandker, D. Li and W. Skiba, Electroweak Corrections from Triplet Scalars, Phys. Rev. D 86 (2012) 015006 [arXiv:1201.4383] [INSPIRE].ADSGoogle Scholar
  18. [18]
    B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, arXiv:1412.1837 [INSPIRE].
  19. [19]
    I. Dorsner, S. Fajfer and N. Kosnik, Heavy and light scalar leptoquarks in proton decay, Phys. Rev. D 86 (2012) 015013 [arXiv:1204.0674] [INSPIRE].ADSGoogle Scholar
  20. [20]
    F. del Aguila, M. Chala, J. Santiago and Y. Yamamoto, Collider limits on leptophilic interactions, arXiv:1411.7394 [INSPIRE].
  21. [21]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].CrossRefADSGoogle Scholar
  22. [22]
    F. del Aguila, J.A. Aguilar-Saavedra, J. de Blas and M. Zralek, Looking for signals beyond the neutrino Standard Model, Acta Phys. Polon. B 38 (2007) 3339 [arXiv:0710.2923] [INSPIRE].ADSGoogle Scholar
  23. [23]
    F. del Aguila, J.A. Aguilar-Saavedra, J. de Blas and M. Pérez-Victoria, Electroweak constraints on see-saw messengers and their implications for LHC, arXiv:0806.1023 [INSPIRE].
  24. [24]
    F. del Aguila, J.A. Aguilar-Saavedra and J. de Blas, New neutrino interactions at large colliders, PoS(ICHEP 2010)296 [arXiv:1012.1327] [INSPIRE].
  25. [25]
    M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].ADSGoogle Scholar
  26. [26]
    J. de Blas et al., Global Bayesian Analysis of the Higgs-boson Couplings, arXiv:1410.4204 [INSPIRE].
  27. [27]
    J.R. Ellis, V. Sanz and T. You, The Effective Standard Model after LHC Run I, arXiv:1410.7703 [INSPIRE].
  28. [28]
    J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev. D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].ADSGoogle Scholar
  30. [30]
    G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 60 (2010) 355 [arXiv:1002.0900] [INSPIRE].CrossRefADSGoogle Scholar
  31. [31]
    M. Carpentier and S. Davidson, Constraints on two-lepton, two quark operators, Eur. Phys. J. C 70 (2010) 1071 [arXiv:1008.0280] [INSPIRE].CrossRefADSGoogle Scholar
  32. [32]
    J. de Blas, M. Chala and J. Santiago, Global Constraints on Lepton-Quark Contact Interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].ADSGoogle Scholar
  33. [33]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: Constraints on extended models and implications for the tt asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].CrossRefADSGoogle Scholar
  34. [34]
    J. de Blas, Electroweak limits on physics beyond the Standard Model, EPJ Web Conf. 60 (2013) 19008 [arXiv:1307.6173] [INSPIRE].CrossRefGoogle Scholar
  35. [35]
    M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106 [arXiv:1306.4644] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    ALEPH, DELPHI, L3, OPAL and SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].ADSGoogle Scholar
  37. [37]
    M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g − 2 and to α(M Z2), Eur. Phys. J. C 71 (2011) 1515 [Erratum ibid. C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
  38. [38]
    Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001 [INSPIRE].Google Scholar
  39. [39]
    ATLAS, CDF, CMS and D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].
  40. [40]
    ATLAS collaboration, Measurement of the Higgs boson mass from the H → γγ and HZZ →4ℓ channels with the ATLAS detector using 25 fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].ADSGoogle Scholar
  41. [41]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, arXiv:1412.8662 [INSPIRE].
  42. [42]
    CDF and D0 collaborations, T.E.W. Group, 2012 Update of the Combination of CDF and D0 Results for the Mass of the W Boson, arXiv:1204.0042 [INSPIRE].
  43. [43]
    ALEPH, CDF, D0, DELPHI, L3, OPAL and SLD collaborations, LEP and Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups, Precision Electroweak Measurements and Constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].
  44. [44]
    ALEPH, DELPHI, L3 and OPAL collaborations, LEP Electroweak Working Group, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119 [arXiv:1302.3415] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    J.A. Aguilar-Saavedra, Effective four-fermion operators in top physics: A Roadmap, Nucl. Phys. B 843 (2011) 638 [Erratum ibid. B 851 (2011) 443] [arXiv:1008.3562] [INSPIRE].
  46. [46]
    I. Dorsner, S. Fajfer and A. Greljo, Cornering Scalar Leptoquarks at LHC, JHEP 10 (2014) 154 [arXiv:1406.4831] [INSPIRE].CrossRefADSGoogle Scholar
  47. [47]
    CMS collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 055 [arXiv:1202.5535] [INSPIRE].CrossRefADSGoogle Scholar
  48. [48]
    F. del Aguila and J. de Blas, Electroweak constraints on new physics, Fortsch. Phys. 59 (2011) 1036 [arXiv:1105.6103] [INSPIRE].CrossRefADSGoogle Scholar
  49. [49]
    F. del Aguila, J. de Blas, P. Langacker and M. Pérez-Victoria, Impact of extra particles on indirect Z limits, Phys. Rev. D 84 (2011) 015015 [arXiv:1104.5512] [INSPIRE].ADSGoogle Scholar
  50. [50]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].CrossRefADSGoogle Scholar
  51. [51]
    A. Atre, M. Carena, T. Han and J. Santiago, Heavy Quarks Above the Top at the Tevatron, Phys. Rev. D 79 (2009) 054018 [arXiv:0806.3966] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Atre et al., Model-Independent Searches for New Quarks at the LHC, JHEP 08 (2011) 080 [arXiv:1102.1987] [INSPIRE].CrossRefADSGoogle Scholar
  53. [53]
    A. Atre, M. Chala and J. Santiago, Searches for New Vector Like Quarks: Higgs Channels, JHEP 05 (2013) 099 [arXiv:1302.0270] [INSPIRE].CrossRefADSGoogle Scholar
  54. [54]
    C. Grojean, E. Salvioni and R. Torre, A weakly constrained W at the early LHC, JHEP 07 (2011) 002 [arXiv:1103.2761] [INSPIRE].CrossRefADSGoogle Scholar
  55. [55]
    J. de Blas, J.M. Lizana and M. Pérez-Victoria, Combining searches of Z and W bosons, JHEP 01 (2013) 166 [arXiv:1211.2229] [INSPIRE].CrossRefADSGoogle Scholar
  56. [56]
    J.A. Aguilar-Saavedra, R. Benbrik, S. Heinemeyer and M. Pérez-Victoria, Handbook of vectorlike quarks: Mixing and single production, Phys. Rev. D 88 (2013) 094010 [arXiv:1306.0572] [INSPIRE].ADSGoogle Scholar
  57. [57]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].CrossRefADSGoogle Scholar
  58. [58]
    W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].CrossRefADSGoogle Scholar
  59. [59]
    C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys. B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].CrossRefADSGoogle Scholar
  60. [60]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].CrossRefADSMathSciNetGoogle Scholar
  61. [61]
    J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].CrossRefADSGoogle Scholar
  62. [62]
    R.S. Gupta, A. Pomarol and F. Riva, BSM Primary Effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • J. de Blas
    • 1
  • M. Chala
    • 2
  • M. Pérez-Victoria
    • 3
  • J. Santiago
    • 3
    • 4
  1. 1.INFN, Sezione di RomaRomeItaly
  2. 2.DESYHamburgGermany
  3. 3.Departamento de Física Teórica y del Cosmos and CAFPEUniversidad de Granada, Campus de FuentenuevaGranadaSpain
  4. 4.Theory Division, CERNGeneva 23Switzerland

Personalised recommendations