Challenges for large-field inflation and moduli stabilization

  • Wilfried Buchmüller
  • Emilian Dudas
  • Lucien Heurtier
  • Alexander Westphal
  • Clemens Wieck
  • Martin Wolfgang Winkler
Open Access
Regular Article - Theoretical Physics

Abstract

We analyze the interplay between Kähler moduli stabilization and chaotic inflation in supergravity. While heavy moduli decouple from inflation in the supersymmetric limit, supersymmetry breaking generically introduces non-decoupling effects. These lead to inflation driven by a soft mass term, mφ2 ∼ mm3/2, where m is a supersymmetric mass parameter. This scenario needs no stabilizer field, but the stability of moduli during inflation imposes a large supersymmetry breaking scale, m3/2H, and a careful choice of initial conditions. This is illustrated in three prominent examples of moduli stabilization: KKLT stabilization, Kähler Uplifting, and the Large Volume Scenario. Remarkably, all models have a universal effective inflaton potential which is flattened compared to quadratic inflation. Hence, they share universal predictions for the CMB observables, in particular a lower bound on the tensor-to-scalar ratio, r ≳ 0.05.

Keywords

Cosmology of Theories beyond the SM Supergravity Models Supersymmetry Breaking Superstring Vacua 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    BICEP2 and Planck collaborations, P. Ade et al., Joint analysis of BICEP2/Keck Array and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    T.W. Grimm, Axion inflation in F-theory, Phys. Lett. B 739 (2014) 201 [arXiv:1404.4268] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    L.E. Ibáñez and I. Valenzuela, The inflaton as an MSSM Higgs and open string modulus monodromy inflation, Phys. Lett. B 736 (2014) 226 [arXiv:1404.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Blumenhagen, D. Herschmann and E. Plauschinn, The challenge of realizing F-term axion monodromy inflation in string theory, JHEP 01 (2015) 007 [arXiv:1409.7075] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and backreaction in F-term axion monodromy inflation, Nucl. Phys. B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  12. [12]
    L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic inflation and string theory, JHEP 01 (2015) 128 [arXiv:1411.5380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. García-Etxebarria, T.W. Grimm and I. Valenzuela, Special points of inflation in flux compactifications, arXiv:1412.5537 [INSPIRE].
  14. [14]
    L. Covi et al., De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Dudas, Three-form multiplet and inflation, JHEP 12 (2014) 014 [arXiv:1407.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Mazumdar, T. Noumi and M. Yamaguchi, Dynamical breaking of shift-symmetry in supergravity-based inflation, Phys. Rev. D 90 (2014) 043519 [arXiv:1405.3959] [INSPIRE].ADSGoogle Scholar
  18. [18]
    W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric moduli stabilization and high-scale inflation, Phys. Lett. B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    W. Buchmüller, E. Dudas, L. Heurtier and C. Wieck, Large-field inflation and supersymmetry breaking, JHEP 09 (2014) 053 [arXiv:1407.0253] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Wieck and M.W. Winkler, Inflation with Fayet-Iliopoulos terms, Phys. Rev. D 90 (2014) 103507 [arXiv:1408.2826] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  24. [24]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Westphal, De Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    R. Kallosh and T. Wrase, Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields, Nucl. Phys. B 96 (1975) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A note on the magnitude of the flux superpotential, JHEP 01 (2014) 027 [arXiv:1310.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Chialva and A. Mazumdar, Super-Planckian excursions of the inflaton and quantum corrections, arXiv:1405.0513 [INSPIRE].
  35. [35]
    S. Talaganis, T. Biswas and A. Mazumdar, Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity, arXiv:1412.3467 [INSPIRE].
  36. [36]
    A. Linde, M. Noorbala and A. Westphal, Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP 03 (2011) 013 [arXiv:1101.2652] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Buchmüller, V. Domcke and K. Schmitz, The chaotic regime of D-term inflation, JCAP 11 (2014) 006 [arXiv:1406.6300] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    W. Buchmüller and K. Ishiwata, Grand unification and subcritical hybrid inflation, arXiv:1412.3764 [INSPIRE].
  39. [39]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].ADSGoogle Scholar
  40. [40]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP 02 (2012) 053 [arXiv:1105.3740] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].ADSGoogle Scholar
  43. [43]
    L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The powers of monodromy, JHEP 09 (2014) 123 [arXiv:1405.3652] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Dodelson, X. Dong, E. Silverstein and G. Torroba, New solutions with accelerated expansion in string theory, JHEP 12 (2014) 050 [arXiv:1310.5297] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    S.K. Soni and H.A. Weldon, Analysis of the supersymmetry breaking induced by N = 1 supergravity theories, Phys. Lett. B 126 (1983) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Ferrara, C. Kounnas and F. Zwirner, Mass formulae and natural hierarchy in string effective supergravities, Nucl. Phys. B 429 (1994) 589 [Erratum ibid. B 433 (1995) 255] [hep-th/9405188] [INSPIRE].
  50. [50]
    E. Dudas and S.K. Vempati, Large D-terms, hierarchical soft spectra and moduli stabilisation, Nucl. Phys. B 727 (2005) 139 [hep-th/0506172] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  51. [51]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  52. [52]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  53. [53]
    R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Wilfried Buchmüller
    • 1
  • Emilian Dudas
    • 2
  • Lucien Heurtier
    • 2
  • Alexander Westphal
    • 1
  • Clemens Wieck
    • 1
  • Martin Wolfgang Winkler
    • 3
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.CPhT, Ecole PolytechniquePalaiseau CedexFrance
  3. 3.Bethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations