Challenges for large-field inflation and moduli stabilization

  • Wilfried Buchmüller
  • Emilian Dudas
  • Lucien Heurtier
  • Alexander Westphal
  • Clemens Wieck
  • Martin Wolfgang Winkler
Open Access
Regular Article - Theoretical Physics


We analyze the interplay between Kähler moduli stabilization and chaotic inflation in supergravity. While heavy moduli decouple from inflation in the supersymmetric limit, supersymmetry breaking generically introduces non-decoupling effects. These lead to inflation driven by a soft mass term, m φ 2  ∼ mm3/2, where m is a supersymmetric mass parameter. This scenario needs no stabilizer field, but the stability of moduli during inflation imposes a large supersymmetry breaking scale, m3/2H, and a careful choice of initial conditions. This is illustrated in three prominent examples of moduli stabilization: KKLT stabilization, Kähler Uplifting, and the Large Volume Scenario. Remarkably, all models have a universal effective inflaton potential which is flattened compared to quadratic inflation. Hence, they share universal predictions for the CMB observables, in particular a lower bound on the tensor-to-scalar ratio, r ≳ 0.05.


Cosmology of Theories beyond the SM Supergravity Models Supersymmetry Breaking Superstring Vacua 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    Planck collaboration, P.A.R. Ade et al., Planck 2013 results. XXII. Constraints on inflation, Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082] [INSPIRE].CrossRefGoogle Scholar
  3. [3]
    BICEP2 and Planck collaborations, P. Ade et al., Joint analysis of BICEP2/Keck Array and Planck data, Phys. Rev. Lett. 114 (2015) 101301 [arXiv:1502.00612] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Kawasaki, M. Yamaguchi and T. Yanagida, Natural chaotic inflation in supergravity, Phys. Rev. Lett. 85 (2000) 3572 [hep-ph/0004243] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    E. Palti and T. Weigand, Towards large r from [p, q]-inflation, JHEP 04 (2014) 155 [arXiv:1403.7507] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09 (2014) 184 [arXiv:1404.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Hebecker, S.C. Kraus and L.T. Witkowski, D7-brane chaotic inflation, Phys. Lett. B 737 (2014) 16 [arXiv:1404.3711] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    T.W. Grimm, Axion inflation in F-theory, Phys. Lett. B 739 (2014) 201 [arXiv:1404.4268] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    L.E. Ibáñez and I. Valenzuela, The inflaton as an MSSM Higgs and open string modulus monodromy inflation, Phys. Lett. B 736 (2014) 226 [arXiv:1404.5235] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R. Blumenhagen, D. Herschmann and E. Plauschinn, The challenge of realizing F-term axion monodromy inflation in string theory, JHEP 01 (2015) 007 [arXiv:1409.7075] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Tuning and backreaction in F-term axion monodromy inflation, Nucl. Phys. B 894 (2015) 456 [arXiv:1411.2032] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    L.E. Ibáñez, F. Marchesano and I. Valenzuela, Higgs-otic inflation and string theory, JHEP 01 (2015) 128 [arXiv:1411.5380] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    I. García-Etxebarria, T.W. Grimm and I. Valenzuela, Special points of inflation in flux compactifications, arXiv:1412.5537 [INSPIRE].
  14. [14]
    L. Covi et al., De Sitter vacua in no-scale supergravities and Calabi-Yau string models, JHEP 06 (2008) 057 [arXiv:0804.1073] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    L. Covi et al., Constraints on modular inflation in supergravity and string theory, JHEP 08 (2008) 055 [arXiv:0805.3290] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    E. Dudas, Three-form multiplet and inflation, JHEP 12 (2014) 014 [arXiv:1407.5688] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    A. Mazumdar, T. Noumi and M. Yamaguchi, Dynamical breaking of shift-symmetry in supergravity-based inflation, Phys. Rev. D 90 (2014) 043519 [arXiv:1405.3959] [INSPIRE].ADSGoogle Scholar
  18. [18]
    W. Buchmüller, C. Wieck and M.W. Winkler, Supersymmetric moduli stabilization and high-scale inflation, Phys. Lett. B 736 (2014) 237 [arXiv:1404.2275] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    W. Buchmüller, E. Dudas, L. Heurtier and C. Wieck, Large-field inflation and supersymmetry breaking, JHEP 09 (2014) 053 [arXiv:1407.0253] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    R. Kallosh and A.D. Linde, Landscape, the scale of SUSY breaking and inflation, JHEP 12 (2004) 004 [hep-th/0411011] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Wieck and M.W. Winkler, Inflation with Fayet-Iliopoulos terms, Phys. Rev. D 90 (2014) 103507 [arXiv:1408.2826] [INSPIRE].ADSGoogle Scholar
  23. [23]
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  24. [24]
    V. Balasubramanian and P. Berglund, Stringy corrections to Kähler potentials, SUSY breaking and the cosmological constant problem, JHEP 11 (2004) 085 [hep-th/0408054] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    A. Westphal, De Sitter string vacua from Kähler uplifting, JHEP 03 (2007) 102 [hep-th/0611332] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  26. [26]
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  27. [27]
    S.C. Davis and M. Postma, SUGRA chaotic inflation and moduli stabilisation, JCAP 03 (2008) 015 [arXiv:0801.4696] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Kallosh, A. Linde, K.A. Olive and T. Rube, Chaotic inflation and supersymmetry breaking, Phys. Rev. D 84 (2011) 083519 [arXiv:1106.6025] [INSPIRE].ADSGoogle Scholar
  29. [29]
    S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].ADSMathSciNetGoogle Scholar
  30. [30]
    R. Kallosh and T. Wrase, Emergence of spontaneously broken supersymmetry on an anti-D3-brane in KKLT dS vacua, JHEP 12 (2014) 117 [arXiv:1411.1121] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys. Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields, Nucl. Phys. B 96 (1975) 331 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    M. Cicoli, J.P. Conlon, A. Maharana and F. Quevedo, A note on the magnitude of the flux superpotential, JHEP 01 (2014) 027 [arXiv:1310.6694] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    D. Chialva and A. Mazumdar, Super-Planckian excursions of the inflaton and quantum corrections, arXiv:1405.0513 [INSPIRE].
  35. [35]
    S. Talaganis, T. Biswas and A. Mazumdar, Towards understanding the ultraviolet behavior of quantum loops in infinite-derivative theories of gravity, arXiv:1412.3467 [INSPIRE].
  36. [36]
    A. Linde, M. Noorbala and A. Westphal, Observational consequences of chaotic inflation with nonminimal coupling to gravity, JCAP 03 (2011) 013 [arXiv:1101.2652] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    W. Buchmüller, V. Domcke and K. Schmitz, The chaotic regime of D-term inflation, JCAP 11 (2014) 006 [arXiv:1406.6300] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    W. Buchmüller and K. Ishiwata, Grand unification and subcritical hybrid inflation, arXiv:1412.3764 [INSPIRE].
  39. [39]
    X. Dong, B. Horn, E. Silverstein and A. Westphal, Simple exercises to flatten your potential, Phys. Rev. D 84 (2011) 026011 [arXiv:1011.4521] [INSPIRE].ADSGoogle Scholar
  40. [40]
    N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP 03 (2011) 023 [arXiv:1101.0026] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    S. Dubovsky, A. Lawrence and M.M. Roberts, Axion monodromy in a model of holographic gluodynamics, JHEP 02 (2012) 053 [arXiv:1105.3740] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev. D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].ADSGoogle Scholar
  43. [43]
    L. McAllister, E. Silverstein, A. Westphal and T. Wrase, The powers of monodromy, JHEP 09 (2014) 123 [arXiv:1405.3652] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].ADSGoogle Scholar
  45. [45]
    L. McAllister, E. Silverstein and A. Westphal, Gravity waves and linear inflation from axion monodromy, Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706] [INSPIRE].ADSGoogle Scholar
  46. [46]
    M. Dodelson, X. Dong, E. Silverstein and G. Torroba, New solutions with accelerated expansion in string theory, JHEP 12 (2014) 050 [arXiv:1310.5297] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S.K. Soni and H.A. Weldon, Analysis of the supersymmetry breaking induced by N = 1 supergravity theories, Phys. Lett. B 126 (1983) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 [hep-th/9303040] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S. Ferrara, C. Kounnas and F. Zwirner, Mass formulae and natural hierarchy in string effective supergravities, Nucl. Phys. B 429 (1994) 589 [Erratum ibid. B 433 (1995) 255] [hep-th/9405188] [INSPIRE].
  50. [50]
    E. Dudas and S.K. Vempati, Large D-terms, hierarchical soft spectra and moduli stabilisation, Nucl. Phys. B 727 (2005) 139 [hep-th/0506172] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  51. [51]
    I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B 733 (2014) 32 [arXiv:1403.3269] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    S. Ferrara, R. Kallosh and A. Linde, Cosmology with nilpotent superfields, JHEP 10 (2014) 143 [arXiv:1408.4096] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    R. Kallosh and A. Linde, Inflation and uplifting with nilpotent superfields, JCAP 01 (2015) 025 [arXiv:1408.5950] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    G. Dall’Agata and F. Zwirner, On sgoldstino-less supergravity models of inflation, JHEP 12 (2014) 172 [arXiv:1411.2605] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Wilfried Buchmüller
    • 1
  • Emilian Dudas
    • 2
  • Lucien Heurtier
    • 2
  • Alexander Westphal
    • 1
  • Clemens Wieck
    • 1
  • Martin Wolfgang Winkler
    • 3
  1. 1.Deutsches Elektronen-Synchrotron DESYHamburgGermany
  2. 2.CPhT, Ecole PolytechniquePalaiseau CedexFrance
  3. 3.Bethe Center for Theoretical Physics and Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations