Advertisement

Parton distributions for the LHC run II

  • The NNPDF collaboration
  • Richard D. Ball
  • Valerio Bertone
  • Stefano Carrazza
  • Christopher S. Deans
  • Luigi Del Debbio
  • Stefano Forte
  • Alberto Guffanti
  • Nathan P. Hartland
  • José I. Latorre
  • Juan Rojo
  • Maria Ubiali
Open Access
Regular Article - Theoretical Physics

Abstract

We present NNPDF3.0, the first set of parton distribution functions (PDFs) determined with a methodology validated by a closure test. NNPDF3.0 uses a global dataset including HERA-II deep-inelastic inclusive cross-sections, the combined HERA charm data, jet production from ATLAS and CMS, vector boson rapidity and transverse momentum distributions from ATLAS, CMS and LHCb, W +c data from CMS and top quark pair production total cross sections from ATLAS and CMS. Results are based on LO, NLO and NNLO QCD theory and also include electroweak corrections. To validate our methodology, we show that PDFs determined from pseudo-data generated from a known underlying law correctly reproduce the statistical distributions expected on the basis of the assumed experimental uncertainties. This closure test ensures that our methodological uncertainties are negligible in comparison to the generic theoretical and experimental uncertainties of PDF determination. This enables us to determine with confidence PDFs at different perturbative orders and using a variety of experimental datasets ranging from HERA-only up to a global set including the latest LHC results, all using precisely the same validated methodology. We explore some of the phenomenological implications of our results for the upcoming 13 TeV Run of the LHC, in particular for Higgs production cross-sections.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    M. Diemoz, F. Ferroni, E. Longo and G. Martinelli, Parton densities from deep inelastic scattering to hadronic processes at super collider energies, Z. Phys. C 39 (1988) 21 [INSPIRE].ADSGoogle Scholar
  2. [2]
    L. Demortier, Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, January 17-20, CERN, Geneva, (2011) see chapter Open Issues in the Wake of Banff 2011.Google Scholar
  3. [3]
    S. Forte, L. Garrido, J.I. Latorre and A. Piccione, Neural network parametrization of deep inelastic structure functions, JHEP 05 (2002) 062 [hep-ph/0204232] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    NNPDF collaboration, L. Del Debbio et al., Unbiased determination of the proton structure function F (2)p with faithful uncertainty estimation, JHEP 03 (2005) 080 [hep-ph/0501067] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    NNPDF collaboration, L. Del Debbio et al., Neural network determination of parton distributions: the nonsinglet case, JHEP 03 (2007) 039 [hep-ph/0701127] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    NNPDF collaboration, R.D. Ball et al., A determination of parton distributions with faithful uncertainty estimation, Nucl. Phys. B 809 (2009) 1 [Erratum ibid. B 816 (2009) 293] [arXiv:0808.1231] [INSPIRE].
  7. [7]
    NNPDF collaboration, J. Rojo et al., Update on neural network parton distributions: NNPDF1.1, arXiv:0811.2288 [INSPIRE].
  8. [8]
    NNPDF collaboration, R.D. Ball et al., Precision determination of electroweak parameters and the strange content of the proton from neutrino deep-inelastic scattering, Nucl. Phys. B 823 (2009) 195 [arXiv:0906.1958] [INSPIRE].ADSzbMATHGoogle Scholar
  9. [9]
    NNPDF collaboration, R.D. Ball et al., Fitting parton distribution data with multiplicative normalization uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].Google Scholar
  10. [10]
    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  11. [11]
    R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology, Nucl. Phys. B 849 (2011) 296 [arXiv:1101.1300] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    NNPDF collaboration, R.D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE].ADSGoogle Scholar
  13. [13]
    R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    G. Watt and R.S. Thorne, Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs, JHEP 08 (2012) 052 [arXiv:1205.4024] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    G. Cowan, Statistical data analysis, Oxford University Press, Oxford U.K. (2002).Google Scholar
  16. [16]
    H1, ZEUS collaboration, V. Radescu, Combination and QCD analysis of the HERA inclusive cross sections, PoS(ICHEP 2010)168.
  17. [17]
    ZEUS, H1 collaboration, A.M. Cooper-Sarkar, PDF Fits at HERA, PoS(EPS-HEP2011)320 [arXiv:1112.2107] [INSPIRE].
  18. [18]
    NNPDF collaboration, R.D. Ball et al., Reweighting NNPDFs: the W lepton asymmetry, Nucl. Phys. B 849 (2011) 112 [Erratum ibid. B 854 (2012) 926] [arXiv:1012.0836] [INSPIRE].
  19. [19]
    New Muon collaboration, M. Arneodo et al., Accurate measurement of F 2d/F 2p and R dR p, Nucl. Phys. B 487 (1997) 3 [hep-ex/9611022] [INSPIRE].ADSGoogle Scholar
  20. [20]
    New Muon collaboration, M. Arneodo et al., Measurement of the proton and deuteron structure functions, F 2p and F 2d and of the ratio σ L T , Nucl. Phys. B 483 (1997) 3 [hep-ph/9610231] [INSPIRE].ADSGoogle Scholar
  21. [21]
    BCDMS collaboration, A.C. Benvenuti et al., A high statistics measurement of the proton structure functions F 2(x, Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 223 (1989) 485 [INSPIRE].ADSGoogle Scholar
  22. [22]
    BCDMS collaboration, A.C. Benvenuti et al., A high statistics measurement of the deuteron structure functions F 2(X, Q 2) and R from deep inelastic muon scattering at high Q 2, Phys. Lett. B 237 (1990) 592 [INSPIRE].ADSGoogle Scholar
  23. [23]
    L.W. Whitlow, E.M. Riordan, S. Dasu, S. Rock and A. Bodek, Precise measurements of the proton and deuteron structure functions from a global analysis of the SLAC deep inelastic electron scattering cross-sections, Phys. Lett. B 282 (1992) 475 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H1, ZEUS collaboration, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e ± p scattering cross sections at HERA, JHEP 01 (2010) 109 [arXiv:0911.0884] [INSPIRE].ADSGoogle Scholar
  25. [25]
    H1 collaboration, F.D. Aaron et al., Measurement of the proton structure function F L(x, Q 2) at low x, Phys. Lett. B 665 (2008) 139 [arXiv:0805.2809] [INSPIRE].ADSGoogle Scholar
  26. [26]
    ZEUS collaboration, J. Breitweg et al., Measurement of D ∗± production and the charm contribution to F 2 in deep inelastic scattering at HERA, Eur. Phys. J. C 12 (2000) 35 [hep-ex/9908012] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    ZEUS collaboration, S. Chekanov et al., Measurement of D ∗± production in deep inelastic e ± p scattering at HERA, Phys. Rev. D 69 (2004) 012004 [hep-ex/0308068] [INSPIRE].Google Scholar
  28. [28]
    ZEUS collaboration, S. Chekanov et al., Measurement of D ± and D 0 production in deep inelastic scattering using a lifetime tag at HERA, Eur. Phys. J. C 63 (2009) 171 [arXiv:0812.3775] [INSPIRE].Google Scholar
  29. [29]
    ZEUS collaboration, S. Chekanov et al., Measurement of charm and beauty production in deep inelastic ep scattering from decays into muons at HERA, Eur. Phys. J. C 65 (2010) 65 [arXiv:0904.3487] [INSPIRE].ADSGoogle Scholar
  30. [30]
    H1 collaboration, C. Adloff et al., Measurement of D ∗± meson production and F 2c in deep inelastic scattering at HERA, Phys. Lett. B 528 (2002) 199 [hep-ex/0108039] [INSPIRE].ADSGoogle Scholar
  31. [31]
    H1 collaboration, F.D. Aaron et al., Measurement of the D ∗± meson production cross section and F 2c , at high Q 2 , in ep scattering at HERA, Phys. Lett. B 686 (2010) 91 [arXiv:0911.3989] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H1 collaboration, F.D. Aaron et al., Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA, Eur. Phys. J. C 65 (2010) 89 [arXiv:0907.2643] [INSPIRE].ADSGoogle Scholar
  33. [33]
    ZEUS collaboration, S. Chekanov et al., Measurement of high-Q 2 neutral current deep inelastic e p scattering cross sections with a longitudinally polarised electron beam at HERA, Eur. Phys. J. C 62 (2009) 625 [arXiv:0901.2385] [INSPIRE].Google Scholar
  34. [34]
    ZEUS collaboration, S. Chekanov et al., Measurement of charged current deep inelastic scattering cross sections with a longitudinally polarised electron beam at HERA, Eur. Phys. J. C 61 (2009) 223 [arXiv:0812.4620] [INSPIRE].Google Scholar
  35. [35]
    CHORUS collaboration, G. Onengut et al., Measurement of nucleon structure functions in neutrino scattering, Phys. Lett. B 632 (2006) 65 [INSPIRE].ADSGoogle Scholar
  36. [36]
    NuTeV collaboration, M. Goncharov et al., Precise measurement of dimuon production cross-sections in ν μ Fe and \( {\overline{\nu}}_{\mu }Fe \) deep inelastic scattering at the Tevatron, Phys. Rev. D 64 (2001) 112006 [hep-ex/0102049] [INSPIRE].Google Scholar
  37. [37]
    D.A. Mason, Measurement of the strange-antistrange asymmetry at NLO in QCD from NuTeV dimuon data, FERMILAB-THESIS-2006-01 (2006).Google Scholar
  38. [38]
    G. Moreno et al., Dimuon production in proton-copper collisions at \( \sqrt{s}=38.8 \) GeV, Phys. Rev. D 43 (1991) 2815 [INSPIRE].ADSGoogle Scholar
  39. [39]
    NuSea collaboration, J.C. Webb et al., Absolute Drell-Yan dimuon cross-sections in 800 GeV/c pp and pd collisions, hep-ex/0302019 [INSPIRE].
  40. [40]
    J.C. Webb, Measurement of continuum dimuon production in 800 GeV/C proton nucleon collisions, hep-ex/0301031 [INSPIRE].
  41. [41]
    NuSea collaboration, R.S. Towell et al., Improved measurement of the \( \overline{d}/\overline{u} \) asymmetry in the nucleon sea, Phys. Rev. D 64 (2001) 052002 [hep-ex/0103030] [INSPIRE].Google Scholar
  42. [42]
    CDF collaboration, T. Aaltonen et al., Direct measurement of the W production charge asymmetry in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 102 (2009) 181801 [arXiv:0901.2169] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    CDF collaboration, T.A. Aaltonen et al., Measurement of dσ/dy of Drell-Yan e + e pairs in the Z mass region from \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Lett. B 692 (2010) 232 [arXiv:0908.3914] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D0 collaboration, V.M. Abazov et al., Measurement of the shape of the boson rapidity distribution for \( p\overline{p} \)Z/gamma e + e + X events produced at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 76 (2007) 012003 [hep-ex/0702025] [INSPIRE].ADSGoogle Scholar
  45. [45]
    CDF collaboration, T. Aaltonen et al., Measurement of the inclusive jet cross section at the Fermilab tevatron pp collider using a cone-based jet algorithm, Phys. Rev. D 78 (2008) 052006 [Erratum ibid. D 79 (2009) 119902] [arXiv:0807.2204] [INSPIRE].
  46. [46]
    D0 collaboration, V.M. Abazov et al., Measurement of the inclusive jet cross-section in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 101 (2008) 062001 [arXiv:0802.2400] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    ATLAS collaboration, Measurement of the inclusive W ± and Z/γ cross sections in the electron and muon decay channels in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 072004 [arXiv:1109.5141] [INSPIRE].ADSGoogle Scholar
  48. [48]
    CMS collaboration, Measurement of the electron charge asymmetry in inclusive W production in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 111806 [arXiv:1206.2598] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    LHCb collaboration, Inclusive W and Z production in the forward region at \( \sqrt{s}=7 \) TeV, JHEP 06 (2012) 058 [arXiv:1204.1620] [INSPIRE].Google Scholar
  50. [50]
    ATLAS collaboration, Measurement of inclusive jet and dijet production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev. D 86 (2012) 014022 [arXiv:1112.6297] [INSPIRE].ADSGoogle Scholar
  51. [51]
    H1 collaboration, F.D. Aaron et al., Inclusive deep inelastic scattering at high Q 2 with longitudinally polarised lepton beams at HERA, JHEP 09 (2012) 061 [arXiv:1206.7007] [INSPIRE].Google Scholar
  52. [52]
    H1 collaboration, F.D. Aaron et al., Measurement of the inclusive e ± p scattering cross section at high inelasticity y and of the structure function F L, Eur. Phys. J. C 71 (2011) 1579 [arXiv:1012.4355] [INSPIRE].Google Scholar
  53. [53]
    ZEUS collaboration, H. Abramowicz et al., Measurement of high-Q 2 neutral current deep inelastic e + p scattering cross sections with a longitudinally polarized positron beam at HERA, Phys. Rev. D 87 (2013) 052014 [arXiv:1208.6138] [INSPIRE].ADSGoogle Scholar
  54. [54]
    ZEUS collaboration, H. Abramowicz et al., Measurement of high-Q 2 charged current deep inelastic scattering cross sections with a longitudinally polarised positron beam at HERA, Eur. Phys. J. C 70 (2010) 945 [arXiv:1008.3493] [INSPIRE].ADSGoogle Scholar
  55. [55]
    H1, ZEUS collaboration, H. Abramowicz et al., Combination and QCD analysis of charm production cross section measurements in deep-inelastic ep scattering at HERA, Eur. Phys. J. C 73 (2013) 2311 [arXiv:1211.1182] [INSPIRE].ADSGoogle Scholar
  56. [56]
    ATLAS collaboration, Measurement of the high-mass Drell-Yan differential cross-section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 725 (2013) 223 [arXiv:1305.4192] [INSPIRE].ADSGoogle Scholar
  57. [57]
    ATLAS collaboration, Measurement of the transverse momentum distribution of W bosons in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012005 [arXiv:1108.6308] [INSPIRE].ADSGoogle Scholar
  58. [58]
    CMS collaboration, Measurement of the muon charge asymmetry in inclusive ppW + X production at \( \sqrt{s}=7 \) TeV and an improved determination of light parton distribution functions, Phys. Rev. D 90 (2014) 032004 [arXiv:1312.6283] [INSPIRE].ADSGoogle Scholar
  59. [59]
    CMS collaboration, Measurement of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2013) 030 [arXiv:1310.7291] [INSPIRE].ADSGoogle Scholar
  60. [60]
    CMS collaboration, Measurement of associated W + charm production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2014) 013[arXiv:1310.1138][INSPIRE].ADSGoogle Scholar
  61. [61]
    LHCb collaboration, Measurement of the cross-section for Ze + e production in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2013) 106 [arXiv:1212.4620] [INSPIRE].Google Scholar
  62. [62]
    CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev. D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].ADSGoogle Scholar
  63. [63]
    ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s}=2.76 \) TeV and comparison to the inclusive jet cross section at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J. C 73 (2013) 2509 [arXiv:1304.4739] [INSPIRE].ADSGoogle Scholar
  64. [64]
    G.P. Salam and G. Soyez, A practical seedless infrared-safe cone jet algorithm, JHEP 05 (2007) 086 [arXiv:0704.0292] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    ATLAS collaboration, Measurement of the cross section for top-quark pair production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector using final states with two high-p T leptons, JHEP 05 (2012) 059 [arXiv:1202.4892] [INSPIRE].ADSGoogle Scholar
  66. [66]
    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV using kinematic information of lepton+jets events, ATLAS-CONF-2011-121 (2011).
  67. [67]
    ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=8 \) TeV using eμ events with b-tagged jets, ATLAS-CONF-2013-097 (2013).
  68. [68]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 02 (2014) 024 [Erratum ibid. 1402 (2014) 102] [arXiv:1312.7582] [INSPIRE].
  69. [69]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 11 (2012) 067 [arXiv:1208.2671] [INSPIRE].ADSGoogle Scholar
  70. [70]
    CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with lepton + jets final states, Phys. Lett. B 720 (2013) 83 [arXiv:1212.6682] [INSPIRE].ADSGoogle Scholar
  71. [71]
    S. Forte, Parton distributions at the dawn of the LHC, Acta Phys. Polon. B 41 (2010) 2859 [arXiv:1011.5247] [INSPIRE].Google Scholar
  72. [72]
    S. Forte and G. Watt, Progress in the determination of the partonic structure of the proton, Ann. Rev. Nucl. Part. Sci. 63 (2013) 291 [arXiv:1301.6754] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    M.L. Mangano and J. Rojo, Cross section ratios between different CM energies at the LHC: opportunities for precision measurements and BSM sensitivity, JHEP 08 (2012) 010 [arXiv:1206.3557] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    W.J. Stirling and E. Vryonidou, Charm production in association with an electroweak gauge boson at the LHC, Phys. Rev. Lett. 109 (2012) 082002 [arXiv:1203.6781] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    S. Alekhin et al., Determination of strange sea quark distributions from fixed-target and collider data, arXiv:1404.6469 [INSPIRE].
  76. [76]
    M. Czakon, M.L. Mangano, A. Mitov and J. Rojo, Constraints on the gluon PDF from top quark pair production at hadron colliders, JHEP 07 (2013) 167 [arXiv:1303.7215] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Beneke, P. Falgari, S. Klein, J. Piclum, C. Schwinn et al., Inclusive top-pair production phenomenology with TOPIXS, JHEP 07 (2012) 194 [arXiv:1206.2454] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    R. Gauld, Feasibility of top quark measurements at LHCb and constraints on the large-x gluon PDF, JHEP 02 (2014) 126 [arXiv:1311.1810] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    S.A. Malik and G. Watt, Ratios of W and Z cross sections at large boson p T as a constraint on PDFs and background to new physics, JHEP 02 (2014) 025 [arXiv:1304.2424] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α S4), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, Phys. Rev. Lett. 110 (2013) 162003 [arXiv:1301.7310] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    CDF collaboration, A. Abulencia et al., Measurement of the inclusive jet cross section using the k T algorithm in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV with the CDF II detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid. D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].
  84. [84]
    H1 collaboration, V. Andreev et al., Measurement of inclusive ep cross sections at high Q 2 at \( \sqrt{s}=225 \) and 252 GeV and of the longitudinal proton structure function F L at HERA, Eur. Phys. J. C 74 (2014) 2814 [arXiv:1312.4821] [INSPIRE].Google Scholar
  85. [85]
    ZEUS collaboration, S. Chekanov et al., Measurement of the longitudinal proton structure function at HERA, Phys. Lett. B 682 (2009) 8 [arXiv:0904.1092] [INSPIRE].ADSGoogle Scholar
  86. [86]
    V. Bertone and J. Rojo, Parton distributions with the combined HERA charm production cross sections, AIP Conf. Proc. 1523 (2012) 51 [arXiv:1212.0741] [INSPIRE].ADSGoogle Scholar
  87. [87]
    S. Alekhin, J. Blümlein, K. Daum, K. Lipka and S. Moch, Precise charm-quark mass from deep-inelastic scattering, Phys. Lett. B 720 (2013) 172 [arXiv:1212.2355] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    J. Gao, M. Guzzi and P.M. Nadolsky, Charm quark mass dependence in a global QCD analysis, Eur. Phys. J. C 73 (2013) 2541 [arXiv:1304.3494] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    NNPDF collaboration, R.D. Ball et al., Parton distributions with QED corrections, Nucl. Phys. B 877 (2013) 290 [arXiv:1308.0598] [INSPIRE].zbMATHGoogle Scholar
  90. [90]
    ATLAS collaboration, Measurement of the transverse momentum distribution of Z/γ bosons in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 705 (2011) 415 [arXiv:1107.2381] [INSPIRE].ADSGoogle Scholar
  91. [91]
    ATLAS collaboration, Measurement of the production of a W boson in association with a charm quark in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 05 (2014) 068 [arXiv:1402.6263] [INSPIRE].ADSGoogle Scholar
  92. [92]
    LHCb collaboration, Measurement of the cross-section for Zμμ production with 1 fb −1 of pp collisions at \( \sqrt{s}=7 \) TeV, LHCb-CONF-2013-007 (2013).
  93. [93]
    LHCb collaboration, Inclusive low mass Drell-Yan production in the forward region at \( \sqrt{s}=7 \) TeV, LHCb-ANA-2012-029 (2012).Google Scholar
  94. [94]
    CMS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 132001 [arXiv:1106.0208][INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    B.J.A. Watt, P. Motylinski and R.S. Thorne, The effect of LHC jet data on MSTW PDFs, Eur. Phys. J. C 74 (2014) 2934 [arXiv:1311.5703] [INSPIRE].ADSCrossRefGoogle Scholar
  96. [96]
    CMS collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1410.6765 [INSPIRE].
  97. [97]
    ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP 05 (2014) 059 [arXiv:1312.3524] [INSPIRE].ADSGoogle Scholar
  98. [98]
    CMS collaboration, Top pair cross section in dileptons, CMS-PAS-TOP-12-007 (2012).
  99. [99]
    J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover and J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering, JHEP 01 (2014) 110 [arXiv:1310.3993] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    D. de Florian, P. Hinderer, A. Mukherjee, F. Ringer and W. Vogelsang, Approximate next-to-next-to-leading order corrections to hadronic jet production, Phys. Rev. Lett. 112 (2014) 082001 [arXiv:1310.7192] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    V. Bertone, S. Carrazza and J. Rojo, APFEL: a PDF evolution library with QED corrections, Comput. Phys. Commun. 185 (2014) 1647 [arXiv:1310.1394] [INSPIRE].ADSMathSciNetzbMATHCrossRefGoogle Scholar
  102. [102]
    J.M. Campbell et al., Working group report: quantum chromodynamics, arXiv:1310.5189 [INSPIRE].
  103. [103]
    The NNPDF collaboration, R.D. Ball et al., Theoretical issues in PDF determination and associated uncertainties, Phys. Lett. B 723 (2013) 330 [arXiv:1303.1189] [INSPIRE].Google Scholar
  104. [104]
    T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID project, Eur. Phys. J. C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  106. [106]
  107. [107]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  108. [108]
    T. Kluge, K. Rabbertz and M. Wobisch, FastNLO: fast pQCD calculations for PDF fits, hep-ph/0609285 [INSPIRE].
  109. [109]
    fastNLO collaboration, M. Wobisch et al., Theory-data comparisons for jet measurements in hadron-induced processes, arXiv:1109.1310 [INSPIRE].
  110. [110]
    L. Del Debbio, N.P. Hartland and S. Schumann, MCgrid: projecting cross section calculations on grids, Comput. Phys. Commun. 185 (2014) 2115 [arXiv:1312.4460] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  111. [111]
    A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  112. [112]
    Z. Bern et al., Ntuples for NLO events at hadron colliders, Comput. Phys. Commun. 185 (2014) 1443 [arXiv:1310.7439] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    V. Bertone, R. Frederix, S. Frixione, J. Rojo and M. Sutton, aMCfast: automation of fast NLO computations for PDF fits, JHEP 08 (2014) 166 [arXiv:1406.7693] [INSPIRE].ADSCrossRefGoogle Scholar
  114. [114]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  115. [115]
  116. [116]
    S. Catani, G. Ferrera and M. Grazzini, W boson production at hadron colliders: the lepton charge asymmetry in NNLO QCD, JHEP 05 (2010) 006 [arXiv:1002.3115] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].ADSCrossRefGoogle Scholar
  118. [118]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  119. [119]
    R. Gavin, Y. Li, F. Petriello and S. Quackenbush, W physics at the LHC with FEWZ 2.1, Comput. Phys. Commun. 184 (2013) 208 [arXiv:1201.5896] [INSPIRE].MathSciNetGoogle Scholar
  120. [120]
    Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev. D 86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].ADSGoogle Scholar
  121. [121]
    M. Czakon and A. Mitov, Top++: a program for the calculation of the top-pair cross-section at hadron colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].ADSCrossRefGoogle Scholar
  122. [122]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSCrossRefGoogle Scholar
  123. [123]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  124. [124]
    S. Carrazza and J. Pires, Perturbative QCD description of jet data from LHC run-I and Tevatron run-II, JHEP 10 (2014) 145 [arXiv:1407.7031] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [INSPIRE].ADSCrossRefGoogle Scholar
  126. [126]
    F.A. Berends and R. Kleiss, Hard photon effects in W ± and Z 0 decay, Z. Phys. C 27 (1985) 365 [INSPIRE].ADSGoogle Scholar
  127. [127]
    F.A. Berends, R. Kleiss, J.P. Revol and J.P. Vialle, QED radiative corrections and radiative decays of the intermediate weak bosons produced in proton-anti-proton collisions, Z. Phys. C 27 (1985) 155 [INSPIRE].ADSGoogle Scholar
  128. [128]
    S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the standard model and its minimal supersymmetric extension, JHEP 01 (2010) 060 [arXiv:0911.2329] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  129. [129]
    U. Baur, S. Keller and W.K. Sakumoto, QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders, Phys. Rev. D 57 (1998) 199 [hep-ph/9707301] [INSPIRE].ADSGoogle Scholar
  130. [130]
    U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [INSPIRE].ADSGoogle Scholar
  131. [131]
    R. Boughezal, Y. Li and F. Petriello, Disentangling radiative corrections using the high-mass Drell-Yan process at the LHC, Phys. Rev. D 89 (2014) 034030 [arXiv:1312.3972] [INSPIRE].ADSGoogle Scholar
  132. [132]
    S. Forte, E. Laenen, P. Nason and J. Rojo, Heavy quarks in deep-inelastic scattering, Nucl. Phys. B 834 (2010) 116 [arXiv:1001.2312] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  133. [133]
    J. Ablinger et al., The 3-loop pure singlet heavy flavor contributions to the structure function F 2(x, Q 2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].ADSMathSciNetGoogle Scholar
  134. [134]
    S. Alekhin and S. Moch, Heavy-quark deep-inelastic scattering with a running mass, Phys. Lett. B 699 (2011) 345 [arXiv:1011.5790] [INSPIRE].ADSCrossRefGoogle Scholar
  135. [135]
    F. Demartin, S. Forte, E. Mariani, J. Rojo and A. Vicini, The impact of PDF and α s uncertainties on Higgs Production in gluon fusion at hadron colliders, Phys. Rev. D 82 (2010) 014002 [arXiv:1004.0962] [INSPIRE].ADSGoogle Scholar
  136. [136]
    F. Cascioli, P. Maierhöfer, N. Moretti, S. Pozzorini and F. Siegert, NLO matching for \( t\overline{t}b\overline{b} \) production with massive b-quarks, Phys. Lett. B 734 (2014) 210 [arXiv:1309.5912] [INSPIRE].ADSCrossRefGoogle Scholar
  137. [137]
    G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum. Meth. A 346 (1994) 306 [INSPIRE].ADSCrossRefGoogle Scholar
  138. [138]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  139. [139]
    R.D. Ball et al., Parton distribution benchmarking with LHC data, JHEP 04 (2013) 125 [arXiv:1211.5142] [INSPIRE].ADSCrossRefGoogle Scholar
  140. [140]
    J. Butterworth et al., Les Houches 2013: physics at TeV colliders: standard model working group report, arXiv:1405.1067 [INSPIRE].
  141. [141]
    G. D’Agostini, Bayesian reasoning in data analysis: a critical introduction, World Scientific, Singapore (2003).zbMATHCrossRefGoogle Scholar
  142. [142]
    G.P. Salam and J. Rojo, A Higher Order Perturbative Parton Evolution Toolkit (HOPPET), Comput. Phys. Commun. 180 (2009) 120 [arXiv:0804.3755] [INSPIRE].ADSCrossRefGoogle Scholar
  143. [143]
    The NNPDF collaboration, R.D. Ball et al., Unbiased determination of polarized parton distributions and their uncertainties, Nucl. Phys. B 874 (2013) 36 [arXiv:1303.7236] [INSPIRE].Google Scholar
  144. [144]
    NNPDF collaboration, E.R. Nocera et al., A first unbiased global determination of polarized PDFs and their uncertainties, Nucl. Phys. B 887 (2014) 276 [arXiv:1406.5539] [INSPIRE].ADSzbMATHGoogle Scholar
  145. [145]
    G. Altarelli, S. Forte and G. Ridolfi, On positivity of parton distributions, Nucl. Phys. B 534 (1998) 277 [hep-ph/9806345] [INSPIRE].ADSCrossRefGoogle Scholar
  146. [146]
    F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J. C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE].ADSCrossRefGoogle Scholar
  147. [147]
    G. Altarelli, R.D. Ball and S. Forte, Small x resummation with quarks: deep-inelastic scattering, Nucl. Phys. B 799 (2008) 199 [arXiv:0802.0032] [INSPIRE].ADSCrossRefGoogle Scholar
  148. [148]
    D.J. Montana and L. Davis, Training feedforward neural networks using genetic algorithms, in the proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI89)Volume 1, Morgan Kaufmann Publishers Inc., U.S.A. (1989)Google Scholar
  149. [149]
    A. Glazov, S. Moch and V. Radescu, Parton distribution uncertainties using smoothness prior, Phys. Lett. B 695 (2011) 238 [arXiv:1009.6170] [INSPIRE].ADSCrossRefGoogle Scholar
  150. [150]
    H.-L. Lai et al., New parton distributions for collider physics, Phys. Rev. D 82 (2010) 074024 [arXiv:1007.2241] [INSPIRE].ADSGoogle Scholar
  151. [151]
    J. Gao et al., CT10 next-to-next-to-leading order global analysis of QCD, Phys. Rev. D 89 (2014) 033009 [arXiv:1302.6246] [INSPIRE].ADSGoogle Scholar
  152. [152]
    NNPDF collaboration, R.D. Ball et al., Parton distributions: determining probabilities in a space of functions, arXiv:1110.1863 [INSPIRE].
  153. [153]
    J. Pumplin, Parametrization dependence and Δχ2 in parton distribution fitting, Phys. Rev. D 82 (2010) 114020 [arXiv:0909.5176] [INSPIRE].ADSGoogle Scholar
  154. [154]
    R.D. Ball et al., Reweighting and unweighting of parton distributions and the LHC W lepton asymmetry data, Nucl. Phys. B 855 (2012) 608 [arXiv:1108.1758] [INSPIRE].ADSCrossRefGoogle Scholar
  155. [155]
    C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP 12 (2011) 058 [arXiv:1107.0683] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  156. [156]
    P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 tune, Eur. Phys. J. C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].ADSCrossRefGoogle Scholar
  157. [157]
    J.M. Campbell, J.W. Huston and W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics, Rept. Prog. Phys. 70 (2007) 89 [hep-ph/0611148] [INSPIRE].ADSCrossRefGoogle Scholar
  158. [158]
    F. Caola, S. Forte and J. Rojo, HERA data and DGLAP evolution: theory and phenomenology, Nucl. Phys. A 854 (2011) 32 [arXiv:1007.5405] [INSPIRE].ADSCrossRefGoogle Scholar
  159. [159]
    M. Cacciari and N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties, JHEP 09 (2011) 039 [arXiv:1105.5152] [INSPIRE].ADSCrossRefGoogle Scholar
  160. [160]
    E. Bagnaschi, M. Cacciari, A. Guffanti and L. Jenniches, An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations, JHEP 02 (2015) 133 [arXiv:1409.5036] [INSPIRE].ADSCrossRefGoogle Scholar
  161. [161]
    S. Forte, A. Isgró and G. Vita, Do we need N 3 LO parton distributions?, Phys. Lett. B 731 (2014) 136 [arXiv:1312.6688] [INSPIRE].ADSCrossRefGoogle Scholar
  162. [162]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, arXiv:1412.3989 [INSPIRE].
  163. [163]
    A.D. Martin et al., Extended parameterisations for MSTW PDFs and their effect on lepton charge asymmetry from W decays, Eur. Phys. J. C 73 (2013) 2318 [arXiv:1211.1215] [INSPIRE].ADSCrossRefGoogle Scholar
  164. [164]
    S.J. Brodsky, P. Hoyer, C. Peterson and N. Sakai, The intrinsic charm of the proton, Phys. Lett. B 93 (1980) 451 [INSPIRE].ADSCrossRefGoogle Scholar
  165. [165]
    J. Pumplin, H.L. Lai and W.K. Tung, The charm parton content of the nucleon, Phys. Rev. D 75 (2007) 054029 [hep-ph/0701220] [INSPIRE].ADSGoogle Scholar
  166. [166]
    L. Barze et al., Neutral current Drell-Yan with combined QCD and electroweak corrections in the POWHEG BOX, Eur. Phys. J. C 73 (2013) 2474 [arXiv:1302.4606] [INSPIRE].ADSCrossRefGoogle Scholar
  167. [167]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, MRST partons and uncertainties, hep-ph/0307262 [INSPIRE].
  168. [168]
    S. Forte and J. Rojo, Dataset sensitivity of the ggH cross-section in the NNPDF analysis, in Les Houches 2013: physics at TeV colliders: standard model working group report, J. Butterworth et al., arXiv:1405.1067 [INSPIRE].
  169. [169]
    NuTeV collaboration, D. Mason et al., Measurement of the nucleon strange-antistrange asymmetry at next-to-leading order in QCD from NuTeV dimuon data, Phys. Rev. Lett. 99 (2007) 192001 [INSPIRE].CrossRefGoogle Scholar
  170. [170]
    NOMAD collaboration, O. Samoylov et al., A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment, Nucl. Phys. B 876 (2013) 339 [arXiv:1308.4750] [INSPIRE].ADSGoogle Scholar
  171. [171]
    ATLAS collaboration, Determination of the strange quark density of the proton from ATLAS measurements of the Wℓν and Zℓℓ cross sections, Phys. Rev. Lett. 109 (2012) 012001 [arXiv:1203.4051] [INSPIRE].ADSCrossRefGoogle Scholar
  172. [172]
    A. Glazov, private communication, on behalf of the H1-ZEUS combination and ATLAS.Google Scholar
  173. [173]
    M. Gouzevitch, private communication, on behalf of CMS.Google Scholar
  174. [174]
    P. Jimenez-Delgado, The role of the input scale in parton distribution analyses, Phys. Lett. B 714 (2012) 301 [arXiv:1206.4262] [INSPIRE].ADSCrossRefGoogle Scholar
  175. [175]
    S. Carrazza, A. Ferrara, D. Palazzo and J. Rojo, APFEL Web: a web-based application for the graphical visualization of parton distribution functions, J. Phys. G 42 (2015) 057001 [arXiv:1410.5456] [INSPIRE].ADSCrossRefGoogle Scholar
  176. [176]
    J. Rojo, Parton distributions based on a maximally consistent dataset, arXiv:1409.3029 [INSPIRE].
  177. [177]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  178. [178]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].ADSCrossRefGoogle Scholar
  179. [179]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSCrossRefGoogle Scholar
  180. [180]
    H.-L. Lai et al., Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions, Phys. Rev. D 82 (2010) 054021 [arXiv:1004.4624] [INSPIRE].ADSGoogle Scholar
  181. [181]
    M. Krämer et al., Supersymmetry production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV, arXiv:1206.2892 [INSPIRE].
  182. [182]
    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \( \sqrt{s} \) = 13, 14, 33 and 100TeV,Eur. Phys. J. C 74(2014) 3174 [arXiv:1407.5066] [INSPIRE].ADSCrossRefGoogle Scholar
  183. [183]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  184. [184]
  185. [185]
    D. Bourilkov, R.C. Group and M.R. Whalley, LHAPDF: PDF use from the Tevatron to the LHC, hep-ph/0605240 [INSPIRE].
  186. [186]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSzbMATHCrossRefGoogle Scholar
  187. [187]
    S. Alekhin et al., The PDF4LHC working group interim report, arXiv:1101.0536 [INSPIRE].
  188. [188]
    S. Dawson, A. Ismail and I. Low, Redux onWhen is the top quark a parton?”, Phys. Rev. D 90 (2014) 014005 [arXiv:1405.6211] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • The NNPDF collaboration
  • Richard D. Ball
    • 1
    • 2
  • Valerio Bertone
    • 2
  • Stefano Carrazza
    • 2
    • 4
  • Christopher S. Deans
    • 1
  • Luigi Del Debbio
    • 1
  • Stefano Forte
    • 4
  • Alberto Guffanti
    • 5
  • Nathan P. Hartland
    • 1
  • José I. Latorre
    • 3
  • Juan Rojo
    • 6
  • Maria Ubiali
    • 7
  1. 1.The Higgs Centre for Theoretical PhysicsUniversity of EdinburghEdinburghUnited Kingdom
  2. 2.PH Department, TH Unit, CERNGeneva 23Switzerland
  3. 3.Departament d’Estructura i Constituents de la MatèriaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Dipartimento di FisicaUniversità di Milano and INFN — Sezione di MilanoMilanoItaly
  5. 5.Niels Bohr International Academy and Discovery Center, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  6. 6.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUnited Kingdom
  7. 7.The Cavendish LaboratoryUniversity of CambridgeCambridgeUnited Kingdom

Personalised recommendations