Collapse and revival in holographic quenches

  • Emilia da Silva
  • Esperanza LopezEmail author
  • Javier Mas
  • Alexandre Serantes
Open Access
Regular Article - Theoretical Physics


We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.


Gauge-gravity correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83 (2011) 863 [arXiv:1007.5331] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Rigol, V. Dunjko, V. Yurovsky and Maxim Olshanii, Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States in 1D Lattice Hard-Core Bosons, Phys. Rev. Lett. 98 (2007) 050405 [cond-mat/0604476].
  3. [3]
    M. Gring et al., Relaxation and Prethermalization in an Isolated Quantum System, Science 337 (2012)1318 [arXiv:1112.0013].ADSCrossRefGoogle Scholar
  4. [4]
    R.W. Robinett, Quantum wave packet revivals, Phys. Rept. 392 (2004) 1 [quant-ph/0401031].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    F. Iglói and H. Rieger, Quantum relaxation after a quench in systems with boundaries, Phys. Rev. Lett. 106 (2011) 035701 [arXiv:1011.3664].ADSCrossRefGoogle Scholar
  6. [6]
    J. Häppölä, G.B. Halász, A. Hamma, Universality and robustness of revivals in the transverse field XY model, Phys. Rev. A 85 (2012) 032114 [arXiv:1011.0380].ADSCrossRefGoogle Scholar
  7. [7]
    J. Cardy, Thermalization and Revivals after a Quantum Quench in Conformal Field Theory, Phys. Rev. Lett. 112 (2014) 220401 [arXiv:1403.3040] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal field theory, hep-th/9808016 [INSPIRE].
  10. [10]
    U.H. Danielsson, E. Keski-Vakkuri and M. Kruczenski, Black hole formation in AdS and thermalization on the boundary, JHEP 02 (2000) 039 [hep-th/9912209] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].MathSciNetGoogle Scholar
  12. [12]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    V. Balasubramanian et al., Thermalization of Strongly Coupled Field Theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    F. Pretorius and M.W. Choptuik, Gravitational collapse in (2+1)-dimensional AdS space-time, Phys. Rev. D 62 (2000) 124012 [gr-qc/0007008] [INSPIRE].ADSGoogle Scholar
  15. [15]
    P. Bizon and A. Rostworowski, On weakly turbulent instability of anti-de Sitter space, Phys. Rev. Lett. 107 (2011) 031102 [arXiv:1104.3702] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J. Abajo-Arrastia, E. da Silva, E. Lopez, J. Mas and A. Serantes, Holographic Relaxation of Finite Size Isolated Quantum Systems, JHEP 05 (2014) 126 [arXiv:1403.2632] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    E.T. Jaynes and F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, IEEE Proc. 51 (1963) 89.CrossRefGoogle Scholar
  18. [18]
    E.M. Wright, D.F. Walls and J.C. Garrison, Collapses and Revivals of Bose-Einstein Condensates Formed in Small Atomic Samples, Phys. Rev. Lett. 77 (1996) 2158.ADSCrossRefGoogle Scholar
  19. [19]
    M. Greiner, O.Mandel, T.W. Hänsh and I. Bloch, Collapse and revival of the matter wave field of a Bose-Einstein condensate, Nature 419 (2002) 51 [cond-mat/0207196].ADSCrossRefGoogle Scholar
  20. [20]
    E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    J. Jalmuzna, A. Rostworowski and P. Bizon, A comment on AdS collapse of a scalar field in higher dimensions, Phys. Rev. D 84 (2011) 085021 [arXiv:1108.4539] [INSPIRE].ADSGoogle Scholar
  22. [22]
    D. Garfinkle and L.A. Pando Zayas, Rapid Thermalization in Field Theory from Gravitational Collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].ADSGoogle Scholar
  23. [23]
    D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On Field Theory Thermalization from Gravitational Collapse, JHEP 02 (2012) 119 [arXiv:1110.5823] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    A. Buchel, L. Lehner and S.L. Liebling, Scalar Collapse in AdS, Phys. Rev. D 86 (2012) 123011 [arXiv:1210.0890] [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Buchel, S.L. Liebling and L. Lehner, Boson stars in AdS spacetime, Phys. Rev. D 87 (2013) 123006 [arXiv:1304.4166] [INSPIRE].ADSGoogle Scholar
  26. [26]
    P. Bizon and J. JalmuŻna, Globally regular instability of AdS 3, Phys. Rev. Lett. 111 (2013) 041102 [arXiv:1306.0317] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    J.D. Brown and M. Henneaux, Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    T. Takayanagi and T. Ugajin, Measuring Black Hole Formations by Entanglement Entropy via Coarse-Graining, JHEP 11 (2010) 054 [arXiv:1008.3439] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    M. Bañados, C. Teitelboim and J. Zanelli, The Black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  32. [32]
    F.V. Dimitrakopoulos, B. Freivogel, M. Lippert and I.-S. Yang, Instability corners in AdS space, arXiv:1410.1880 [INSPIRE].
  33. [33]
    O.J.C. Dias, G.T. Horowitz and J.E. Santos, Black holes with only one Killing field, JHEP 07 (2011) 115 [arXiv:1105.4167] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Emilia da Silva
    • 1
  • Esperanza Lopez
    • 1
    Email author
  • Javier Mas
    • 2
  • Alexandre Serantes
    • 2
  1. 1.Instituto de Física Teórica IFT UAM/CSICUniversidad Autónoma de MadridCantoblancoSpain
  2. 2.Departamento de Fısica de PartículasUniversidade de Santiago de Compostela, and Instituto Galego de Fısica de Altas Enerxías IGFAESantiago de CompostelaSpain

Personalised recommendations