Homogeneous instantons in bigravity

  • Ying-li ZhangEmail author
  • Misao Sasaki
  • Dong-han Yeom
Open Access
Regular Article - Theoretical Physics


We study homogeneous gravitational instantons, conventionally called the Hawking-Moss (HM) instantons, in bigravity theory. The HM instantons describe the amplitude of quantum tunneling from a false vacuum to the true vacuum. Corrections to General Relativity (GR) are found in a closed form. Using the result, we discuss the following two issues: reduction to the de Rham-Gabadadze-Tolley (dRGT) massive gravity and the possibility of preference for a large e-folding number in the context of the Hartle-Hawking (HH) no-boundary proposal. In particular, concerning the dRGT limit, it is found that the tunneling through the so-called self-accelerating branch is exponentially suppressed relative to the normal branch, and the probability becomes zero in the dRGT limit. As far as HM instantons are concerned, this could imply that the reduction from bigravity to the dRGT massive gravity is ill-defined.


Solitons Monopoles and Instantons Models of Quantum Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M. Fierz and W. Pauli, On relativistic wave equations for particles of arbitrary spin in an electromagnetic field, Proc. Roy. Soc. Lond. A 173 (1939) 211 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    D.G. Boulware and S. Deser, Can gravitation have a finite range?, Phys. Rev. D 6 (1972) 3368 [INSPIRE].ADSGoogle Scholar
  3. [3]
    P. Creminelli, A. Nicolis, M. Papucci and E. Trincherini, Ghosts in massive gravity, JHEP 09 (2005) 003 [hep-th/0505147] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    V.A. Rubakov and P.G. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    C. de Rham and G. Gabadadze, Generalization of the Fierz-Pauli action, Phys. Rev. D 82 (2010) 044020 [arXiv:1007.0443] [INSPIRE].ADSGoogle Scholar
  6. [6]
    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett. 106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Hinterbichler, Theoretical aspects of massive gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. de Rham, Massive gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].CrossRefzbMATHGoogle Scholar
  9. [9]
    S.F. Hassan and R.A. Rosen, On non-linear actions for massive gravity, JHEP 07 (2011) 009 [arXiv:1103.6055] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    S.F. Hassan and R.A. Rosen, Resolving the ghost problem in non-linear massive gravity, Phys. Rev. Lett. 108 (2012) 041101 [arXiv:1106.3344] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    S.F. Hassan, R.A. Rosen and A. Schmidt-May, Ghost-free massive gravity with a general reference metric, JHEP 02 (2012) 026 [arXiv:1109.3230] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP 02 (2012) 126 [arXiv:1109.3515] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    S.F. Hassan and R.A. Rosen, Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity, JHEP 04 (2012) 123 [arXiv:1111.2070] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G. D’Amico et al., Massive cosmologies, Phys. Rev. D 84 (2011) 124046 [arXiv:1108.5231] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Open FRW universes and self-acceleration from nonlinear massive gravity, JCAP 11 (2011) 030 [arXiv:1109.3845] [INSPIRE].CrossRefGoogle Scholar
  16. [16]
    A.E. Gumrukcuoglu, C. Lin and S. Mukohyama, Cosmological perturbations of self-accelerating universe in nonlinear massive gravity, JCAP 03 (2012) 006 [arXiv:1111.4107] [INSPIRE].CrossRefGoogle Scholar
  17. [17]
    D. Comelli, M. Crisostomi, F. Nesti and L. Pilo, FRW cosmology in ghost free massive gravity, JHEP 03 (2012) 067 [Erratum ibid. 06 (2012) 020] [arXiv:1111.1983] [INSPIRE].
  18. [18]
    P. Gratia, W. Hu and M. Wyman, Self-accelerating massive gravity: exact solutions for any isotropic matter distribution, Phys. Rev. D 86 (2012) 061504 [arXiv:1205.4241] [INSPIRE].ADSGoogle Scholar
  19. [19]
    T. Kobayashi, M. Siino, M. Yamaguchi and D. Yoshida, New cosmological solutions in massive gravity, Phys. Rev. D 86 (2012) 061505 [arXiv:1205.4938] [INSPIRE].ADSGoogle Scholar
  20. [20]
    M. Fasiello and A.J. Tolley, Cosmological perturbations in massive gravity and the Higuchi bound, JCAP 11 (2012) 035 [arXiv:1206.3852] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. De Felice, A.E. Gumrukcuoglu and S. Mukohyama, Massive gravity: nonlinear instability of the homogeneous and isotropic universe, Phys. Rev. Lett. 109 (2012) 171101 [arXiv:1206.2080] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    D. Langlois and A. Naruko, Cosmological solutions of massive gravity on de Sitter, Class. Quant. Grav. 29 (2012) 202001 [arXiv:1206.6810] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    H. Motohashi and T. Suyama, Self-accelerating solutions in massive gravity on isotropic reference metric, Phys. Rev. D 86 (2012) 081502 [arXiv:1208.3019] [INSPIRE].ADSGoogle Scholar
  24. [24]
    M.S. Volkov, Cosmological solutions with massive gravitons in the bigravity theory, JHEP 01 (2012) 035 [arXiv:1110.6153] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  25. [25]
    M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell and S.F. Hassan, Cosmological solutions in bimetric gravity and their observational tests, JCAP 03 (2012) 042 [arXiv:1111.1655] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    Y. Akrami, T.S. Koivisto and M. Sandstad, Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality, JHEP 03 (2013) 099 [arXiv:1209.0457] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    Y. Akrami, T.S. Koivisto, D.F. Mota and M. Sandstad, Bimetric gravity doubly coupled to matter: theory and cosmological implications, JCAP 10 (2013) 046 [arXiv:1306.0004] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    N. Tamanini, E.N. Saridakis and T.S. Koivisto, The cosmology of interacting spin-2 fields, JCAP 02 (2014) 015 [arXiv:1307.5984] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    A.R. Solomon, Y. Akrami and T.S. Koivisto, Linear growth of structure in massive bigravity, JCAP 10 (2014) 066 [arXiv:1404.4061] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    F. Koennig, Y. Akrami, L. Amendola, M. Motta and A.R. Solomon, Stable and unstable cosmological models in bimetric massive gravity, Phys. Rev. D 90 (2014) 124014 [arXiv:1407.4331] [INSPIRE].ADSGoogle Scholar
  31. [31]
    S. Weinberg, The cosmological constant problem, Rev. Mod. Phys. 61 (1989) 1 [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. [32]
    S. Nobbenhuis, Categorizing different approaches to the cosmological constant problem, Found. Phys. 36 (2006) 613 [gr-qc/0411093] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    L. Susskind, The anthropic landscape of string theory, in Universe or multiverse?, B. Carr ed., (2009), pg. 247 [hep-th/0302219] [INSPIRE].
  34. [34]
    M. Park and L. Sorbo, Vacua and instantons of ghost-free massive gravity, Phys. Rev. D 87 (2013) 024041 [arXiv:1212.2691] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S.W. Hawking and I.G. Moss, Supercooled phase transitions in the very early universe, Phys. Lett. B 110 (1982) 35 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    S.R. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (1980) 3305 [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    Y.-L. Zhang, R. Saito and M. Sasaki, Hawking-Moss instanton in nonlinear massive gravity, JCAP 02 (2013) 029 [arXiv:1210.6224] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y.-L. Zhang, R. Saito, D.-H. Yeom and M. Sasaki, Coleman-de Luccia instanton in dRGT massive gravity, JCAP 02 (2014) 022 [arXiv:1312.0709] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    J.B. Hartle and S.W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  40. [40]
    M. Sasaki, D.-H. Yeom and Y.-L. Zhang, Hartle-Hawking no-boundary proposal in dRGT massive gravity: making inflation exponentially more probable, Class. Quant. Grav. 30 (2013) 232001 [arXiv:1307.5948] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Particular solutions in bimetric theory and their implications, Int. J. Mod. Phys. D 23 (2014) 1443002 [arXiv:1407.2772] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    S.R. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations, Commun. Math. Phys. 58 (1978) 211 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    T. Tanaka and M. Sasaki, False vacuum decay with gravity: negative mode problem, Prog. Theor. Phys. 88 (1992) 503 [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    B.-H. Lee, C.H. Lee, W. Lee and C. Oh, Instanton solutions mediating tunneling between the degenerate vacua in curved space, Phys. Rev. D 82 (2010) 024019 [arXiv:0910.1653] [INSPIRE].ADSGoogle Scholar
  45. [45]
    B.-H. Lee, C.H. Lee, W. Lee and C. Oh, Oscillating instanton solutions in curved space, Phys. Rev. D 85 (2012) 024022 [arXiv:1106.5865] [INSPIRE].ADSGoogle Scholar
  46. [46]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, On partially massless bimetric gravity, Phys. Lett. B 726 (2013) 834 [arXiv:1208.1797] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Bimetric theory and partial masslessness with Lanczos-Lovelock terms in arbitrary dimensions, Class. Quant. Grav. 30 (2013) 184010 [arXiv:1212.4525] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys. B 282 (1987) 397 [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    S.F. Hassan, A. Schmidt-May and M. von Strauss, Higher derivative gravity and conformal gravity from bimetric and partially massless bimetric theory, arXiv:1303.6940 [INSPIRE].
  50. [50]
    D.-I. Hwang and D.-H. Yeom, Toward inflation models compatible with the no-boundary proposal, JCAP 06 (2014) 007 [arXiv:1311.6872] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    S.B. Giddings and A. Strominger, Axion induced topology change in quantum gravity and string theory, Nucl. Phys. B 306 (1988) 890 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A.O. Barvinsky and A.Y. Kamenshchik, Cosmological landscape from nothing: some like it hot, JCAP 09 (2006) 014 [hep-th/0605132] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    S.J. Robles-Pérez, Creation of entangled universes avoids the big bang singularity, arXiv:1311.2379 [INSPIRE].
  54. [54]
    N. Arkani-Hamed, J. Orgera and J. Polchinski, Euclidean wormholes in string theory, JHEP 12 (2007) 018 [arXiv:0705.2768] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    Y. Yamashita, A. De Felice and T. Tanaka, Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter, Int. J. Mod. Phys. D 23 (2014) 3003 [arXiv:1408.0487] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  56. [56]
    C. de Rham, L. Heisenberg and R.H. Ribeiro, On couplings to matter in massive (bi-)gravity, Class. Quant. Grav. 32 (2015) 035022 [arXiv:1408.1678] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  57. [57]
    C. de Rham, L. Heisenberg and R.H. Ribeiro, Ghosts and matter couplings in massive gravity, bigravity and multigravity, Phys. Rev. D 90 (2014) 124042 [arXiv:1409.3834] [INSPIRE].ADSGoogle Scholar
  58. [58]
    J. Enander, A.R. Solomon, Y. Akrami and E. Mortsell, Cosmic expansion histories in massive bigravity with symmetric matter coupling, JCAP 01 (2015) 006 [arXiv:1409.2860] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  59. [59]
    L. Heisenberg, Quantum corrections in massive bigravity and new effective composite metrics, arXiv:1410.4239 [INSPIRE].
  60. [60]
    A.E. Gumrukcuoglu, L. Heisenberg, S. Mukohyama and N. Tanahashi, Cosmology in bimetric theory with an effective composite coupling to matter, arXiv:1501.02790 [INSPIRE].
  61. [61]
    Y. Zhang, D. Yeom and M. Sasaki, in preparation.Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.National Astronomy ObservatoriesChinese Academy of ScienceBeijingChina
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  3. 3.Leung Center for Cosmology and Particle AstrophysicsNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations