Shock waves in Lifshitz-like spacetimes

  • Irina Ya. Aref’eva
  • Anastasia A. Golubtsova
Open Access
Regular Article - Theoretical Physics


We construct shock waves for Lifshitz-like geometries in four- and fivedimensional effective theories as well as in D3-D7 and D4-D6 brane systems. The solutions to the domain wall profile equations are found. Further, the study makes a connection with the implications for the quark-gluon plasma formation in heavy-ion collisions. According to the holographic approach, the multiplicity of particles produced in heavy-ion collisions can be estimated by the area of the trapped surface formed in shock wave collisions. We calculate the areas of trapped surfaces in the geometry of two colliding Lifshitz domain walls. Our estimates show that for five-dimensional cases with certain values of the critical exponent the dependence of multiplicity on the energy of colliding ions is rather close to the experimental data \( \mathrm{\mathcal{M}} \)s 0.15 observed at RHIC and LHC.


Holography and quark-gluon plasmas Gauge-gravity correspondence Intersecting branes models 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].
  5. [5]
    I.Ya. Aref’eva, Holographic approach to quark-gluon plasma in heavy ion collisions, Phys. Usp. 57 (2014) 527.CrossRefGoogle Scholar
  6. [6]
    O. DeWolfe, S.S. Gubser, C. Rosen and D. Teaney, Heavy ions and string theory, Prog. Part. Nucl. Phys. 75 (2014) 86 [arXiv:1304.7794] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].ADSMathSciNetGoogle Scholar
  8. [8]
    R.M. Hornreich, The Lifshitz point: Phase diagrams and critical behavior, J. Magn. Magn. Mater. 15-18 (1980) 387.CrossRefGoogle Scholar
  9. [9]
    H.W. Diehl, Critical behavior at M-Axial Lifshitz points, Act. phys. slov. 52 (2002) 271 [arXiv:cond-mat/0205284].Google Scholar
  10. [10]
    I.R. Yukhnovskii, Phase Transitions of the Second Order - Collective Variables Method, World Scientific, 1987.Google Scholar
  11. [11]
    L.D. Landau, E.M. Lifshitz, Statistical Physics, vol. 5, 3rd ed., Butterworth-Heinemann, 1980.Google Scholar
  12. [12]
    C. Hoyos and P. Koroteev, On the Null Energy Condition and Causality in Lifshitz Holography, Phys. Rev. D 82 (2010) 084002 [Erratum ibid. D 82 (2010) 109905] [arXiv:1007.1428] [INSPIRE].
  13. [13]
    K. Copsey and R. Mann, Pathologies in Asymptotically Lifshitz Spacetimes, JHEP 03 (2011) 039 [arXiv:1011.3502] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G.T. Horowitz and B. Way, Lifshitz Singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].ADSGoogle Scholar
  15. [15]
    N. Bao, X. Dong, S. Harrison and E. Silverstein, The Benefits of Stress: Resolution of the Lifshitz Singularity, Phys. Rev. D 86 (2012) 106008 [arXiv:1207.0171] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Harrison, S. Kachru and H. Wang, Resolving Lifshitz Horizons, JHEP 02 (2014) 085 [arXiv:1202.6635] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Donos and J.P. Gauntlett, Lifshitz Solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
  21. [21]
    U.H. Danielsson and L. Thorlacius, Black holes in asymptotically Lifshitz spacetime, JHEP 03 (2009) 070 [arXiv:0812.5088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R.B. Mann, Lifshitz Topological Black Holes, JHEP 06 (2009) 075 [arXiv:0905.1136] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    G. Bertoldi, B.A. Burrington and A. Peet, Black Holes in asymptotically Lifshitz spacetimes with arbitrary critical exponent, Phys. Rev. D 80 (2009) 126003 [arXiv:0905.3183] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    E.J. Brynjolfsson, U.H. Danielsson, L. Thorlacius and T. Zingg, Holographic Superconductors with Lifshitz Scaling, J. Phys. A 43 (2010) 065401 [arXiv:0908.2611] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  25. [25]
    J. Tarrio and S. Vandoren, Black holes and black branes in Lifshitz spacetimes, JHEP 09 (2011) 017 [arXiv:1105.6335] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S.A. Hartnoll, Horizons, holography and condensed matter, arXiv:1106.4324 [INSPIRE].
  27. [27]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  29. [29]
    C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    B. Gouteraux and E. Kiritsis, Generalized Holographic Quantum Criticality at Finite Density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  31. [31]
    L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    S.S. Pal, Anisotropic gravity solutions in AdS/CMT, arXiv:0901.0599 [INSPIRE].
  34. [34]
    T. Azeyanagi, W. Li and T. Takayanagi, On String Theory Duals of Lifshitz-like Fixed Points, JHEP 06 (2009) 084 [arXiv:0905.0688] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    D. Mateos and D. Trancanelli, The anisotropic N = 4 super Yang-Mills plasma and its instabilities, Phys. Rev. Lett. 107 (2011) 101601 [arXiv:1105.3472] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    D. Mateos and D. Trancanelli, Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  37. [37]
    A. Rebhan and D. Steineder, Violation of the Holographic Viscosity Bound in a Strongly Coupled Anisotropic Plasma, Phys. Rev. Lett. 108 (2012) 021601 [arXiv:1110.6825] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    K.B. Fadafan and H. Soltanpanahi, Energy loss in a strongly coupled anisotropic plasma, JHEP 10 (2012) 085 [arXiv:1206.2271] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Drag force in a strongly coupled anisotropic plasma, JHEP 08 (2012) 100 [arXiv:1202.3696] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    D. Giataganas, Probing strongly coupled anisotropic plasma, JHEP 07 (2012) 031 [arXiv:1202.4436] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    M. Chernicoff, D. Fernandez, D. Mateos and D. Trancanelli, Jet quenching in a strongly coupled anisotropic plasma, JHEP 08 (2012) 041 [arXiv:1203.0561] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    K.B. Fadafan, D. Giataganas and H. Soltanpanahi, The Imaginary Part of the Static Potential in Strongly Coupled Anisotropic Plasma, JHEP 11 (2013) 107 [arXiv:1306.2929] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    S. Chakrabortty, S. Chakraborty and N. Haque, Brownian motion in strongly coupled, anisotropic Yang-Mills plasma: A holographic approach, Phys. Rev. D 89 (2014) 066013 [arXiv:1311.5023] [INSPIRE].ADSGoogle Scholar
  44. [44]
    D. Giataganas and H. Soltanpanahi, Heavy Quark Diffusion in Strongly Coupled Anisotropic Plasmas, JHEP 06 (2014) 047 [arXiv:1312.7474] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    L. Cheng, X.-H. Ge and S.-J. Sin, Anisotropic plasma with a chemical potential and scheme-independent instabilities, Phys. Lett. B 734 (2014) 116 [arXiv:1404.1994] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A. Rebhan and D. Steineder, Probing Two Holographic Models of Strongly Coupled Anisotropic Plasma, JHEP 08 (2012) 020 [arXiv:1205.4684] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    R.A. Janik and P. Witaszczyk, Towards the description of anisotropic plasma at strong coupling, JHEP 09 (2008) 026 [arXiv:0806.2141] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    S. Pal, More gravity solutions of AdS/CMT, arXiv:0809.1756 [INSPIRE].
  49. [49]
    S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].ADSGoogle Scholar
  50. [50]
    J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling Heavy Ion Collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  51. [51]
    L. Álvarez-Gaumé, C. Gomez, A. Sabio Vera, A. Tavanfar and M.A. Vazquez-Mozo, Critical formation of trapped surfaces in the collision of gravitational shock waves, JHEP 02 (2009) 009 [arXiv:0811.3969] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    P.M. Chesler and L.G. Yaffe, Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 102 (2009) 211601 [arXiv:0812.2053] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  53. [53]
    S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].ADSGoogle Scholar
  54. [54]
    I.Y. Aref’eva, A.A. Bagrov and E.A. Guseva, Critical Formation of Trapped Surfaces in the Collision of Non-expanding Gravitational Shock Waves in de Sitter Space-Time, JHEP 12 (2009) 009 [arXiv:0905.1087] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  55. [55]
    P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    I.Y. Arefeva, A.A. Bagrov and E.O. Pozdeeva, Holographic phase diagram of quark-gluon plasma formed in heavy-ions collisions, JHEP 05 (2012) 117 [arXiv:1201.6542] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    E. Kiritsis and A. Taliotis, Multiplicities from black-hole formation in heavy-ion collisions, JHEP 04 (2012) 065 [arXiv:1111.1931] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    I.Y. Aref’eva, E.O. Pozdeeva and T.O. Pozdeeva, Holographic estimation of multiplicity and membranes collision in modified spaces AdS 5, Theor. Math. Phys. 176 (2013) 861 [arXiv:1401.1180] [INSPIRE].CrossRefzbMATHGoogle Scholar
  59. [59]
    V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].ADSGoogle Scholar
  60. [60]
    J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic Evolution of Entanglement Entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  61. [61]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    I.Y. Arefeva and I.V. Volovich, On Holographic Thermalization and Dethermalization of quark-gluon Plasma, arXiv:1211.6041 [INSPIRE].
  63. [63]
    V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].ADSGoogle Scholar
  64. [64]
    K. Sfetsos, On gravitational shock waves in curved space-times, Nucl. Phys. B 436 (1995) 721 [hep-th/9408169] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  65. [65]
    I.Y. Aref’eva, A. A. Bagrov, Formation of trapped surfaces in the collision of nonexpanding gravitational shock waves in an AdS4 spacetime, Theor. Math. Phys. 161 (2010) 1643 [INSPIRE].Google Scholar
  66. [66]
    M. Hotta and M. Tanaka, Shock wave geometry with nonvanishing cosmological constant, Class. Quant. Grav. 10 (1993) 307 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    I.Ya. Aref’eva, A.A. Bagrov, L.V. Joukovskaya, Several aspects of applying distributions to analysis of gravitational shock waves in general relativity, St. Petersburg Math. J. 22 (2011)337.MathSciNetCrossRefzbMATHGoogle Scholar
  68. [68]
    D.S. Ageev and I.Y. Aref’eva, Holographic Thermalization in Quark Confining Background, arXiv:1409.7558 [INSPIRE].
  69. [69]
    T. Ortin, Gravity and Strings, Cambridge University, Cambridge University Press, 2004.Google Scholar
  70. [70]
    J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic Models for Theories with Hyperscaling Violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    K. Narayan, On Lifshitz scaling and hyperscaling violation in string theory, Phys. Rev. D 85 (2012) 106006 [arXiv:1202.5935] [INSPIRE].ADSGoogle Scholar
  72. [72]
    H. Braviner, R. Gregory and S.F. Ross, Flows involving Lifshitz solutions, Class. Quant. Grav. 28 (2011) 225028 [arXiv:1108.3067] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  73. [73]
    J.T. Liu and Z. Zhao, Holographic Lifshitz flows and the null energy condition, arXiv:1206.1047 [INSPIRE].
  74. [74]
    J. Bhattacharya, S. Cremonini and B. Goutéraux, Intermediate scalings in holographic RG flows and conductivities, JHEP 02 (2015) 035 [arXiv:1409.4797] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  75. [75]
    C. Hoyos, B.S. Kim and Y. Oz, Lifshitz Hydrodynamics, JHEP 11 (2013) 145 [arXiv:1304.7481] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Irina Ya. Aref’eva
    • 1
  • Anastasia A. Golubtsova
    • 2
  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bogoliubov Laboratory of Theoretical Physics, JINRDubnaRussia

Personalised recommendations