Shedding light on the \( t\overline{t} \) asymmetry: the photon handle

  • J. A. Aguilar-Saavedra
  • E. Álvarez
  • A. Juste
  • F. Rubbo
Open Access
Article

Abstract

We investigate a charge asymmetry in \( t\overline{t}\gamma \) production at the LHC that provides complementary information to the measured asymmetries in \( t\overline{t} \) production. We estimate the experimental uncertainty in its measurement at the LHC with 8 TeV and 14 TeV. We argue that, for new physics models that simultaneously reproduce the asymmetry excess in \( t\overline{t} \) production at the Tevatron and the SM-like asymmetry at the LHC, the measurement in \( t\overline{t}\gamma \) production at the LHC is likely to deviate from the SM prediction. In two new physics models studied in detail we find that the deviations could be significant and observable at the 14 TeV run.

Keywords

Phenomenological Models Hadronic Colliders 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CDF collaboration, T. Aaltonen et al., Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D 87 (2013) 092002 [arXiv:1211.1003] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CDF collaboration, T. Aaltonen et al., Measurement of the Differential Cross Section dσ/d(cosθ t) for Top-Quark Pair Production in \( p\overline{p} \) Collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. Lett. 111 (2013) 182002 [arXiv:1306.2357] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    CDF collaboration, T.A. Aaltonen et al., Measurement of the leptonic asymmetry in \( t\overline{t} \) events produced in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 88 (2013) 072003 [arXiv:1308.1120] [INSPIRE].ADSGoogle Scholar
  4. [4]
    D0 collaboration, V.M. Abazov et al., Measurement of the asymmetry in angular distributions of leptons produced in dilepton \( t\overline{t} \) final states in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 88 (2013) 112002 [arXiv:1308.6690] [INSPIRE].ADSGoogle Scholar
  5. [5]
    CMS collaboration, Measurement of the charge asymmetry in top-quark pair production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 709 (2012) 28 [arXiv:1112.5100] [INSPIRE].ADSGoogle Scholar
  6. [6]
    ATLAS collaboration, Measurement of the top quark pair production charge asymmetry in proton-proton collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, JHEP 02 (2014) 107 [arXiv:1311.6724] [INSPIRE].ADSGoogle Scholar
  7. [7]
    CMS collaboration, Measurement of the \( t\overline{t} \) charge asymmetry with lepton + jets events at 8 TeV, CMS-PAS-TOP-12-033.
  8. [8]
    V. Ahrens, A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D 84 (2011) 074004 [arXiv:1106.6051] [INSPIRE].ADSGoogle Scholar
  9. [9]
    W. Hollik and D. Pagani, The electroweak contribution to the top quark forward-backward asymmetry at the Tevatron, Phys. Rev. D 84 (2011) 093003 [arXiv:1107.2606] [INSPIRE].ADSGoogle Scholar
  10. [10]
    J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, JHEP 01 (2012) 063 [arXiv:1109.6830] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    W. Bernreuther and Z.-G. Si, Top quark and leptonic charge asymmetries for the Tevatron and LHC, Phys. Rev. D 86 (2012) 034026 [arXiv:1205.6580] [INSPIRE].ADSGoogle Scholar
  12. [12]
    J.A. Aguilar-Saavedra and A. Juste, Collider-independent \( t\overline{t} \) forward-backward asymmetries, Phys. Rev. Lett. 109 (2012) 211804 [arXiv:1205.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in \( t\overline{t} \) production: LHC versus Tevatron, Phys. Rev. D 84 (2011) 115013 [arXiv:1105.4606] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Simple models for the top asymmetry: Constraints and predictions, JHEP 09 (2011) 097 [arXiv:1107.0841] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Djouadi, G. Moreau, F. Richard and R.K. Singh, The Forward-backward asymmetry of top quark production at the Tevatron in warped extra dimensional models, Phys. Rev. D 82 (2010) 071702 [arXiv:0906.0604] [INSPIRE].ADSGoogle Scholar
  16. [16]
    S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].ADSGoogle Scholar
  17. [17]
    K. Cheung, W.-Y. Keung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry, Phys. Lett. B 682 (2009) 287 [arXiv:0908.2589] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Shu, T.M.P. Tait and K. Wang, Explorations of the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Rev. D 81 (2010) 034012 [arXiv:0911.3237] [INSPIRE].ADSGoogle Scholar
  19. [19]
    A.E. Nelson, T. Okui and T.S. Roy, A unified, flavor symmetric explanation for the \( t\overline{t} \) asymmetry and Wjj excess at CDF, Phys. Rev. D 84 (2011) 094007 [arXiv:1104.2030] [INSPIRE].ADSGoogle Scholar
  20. [20]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, \( t\overline{t} \) charge asymmetry, family and friends, J. Phys. Conf. Ser. 447 (2013) 012015 [arXiv:1302.6618] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Drobnak, J.F. Kamenik and J. Zupan, Flipping \( t\overline{t} \) Asymmetries at the Tevatron and the LHC, Phys. Rev. D 86 (2012) 054022 [arXiv:1205.4721] [INSPIRE].ADSGoogle Scholar
  22. [22]
    E. Coluccio Leskow and E. Álvarez, A charged Zto explain the apparent disagreement in top-antitop asymmetries between Tevatron and LHC, PoS(ICHEP2012)201.
  23. [23]
    E. Álvarez and E. Coluccio Leskow, A charged Zto conciliate the apparent disagreement between top-antitop Tevatron forward-backward asymmetry and LHC charge asymmetry, Phys. Rev. D 86 (2012) 114034 [arXiv:1209.4354] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J. Drobnak, A.L. Kagan, J.F. Kamenik, G. Perez and J. Zupan, Forward Tevatron Tops and Backward LHC Tops with Associates, Phys. Rev. D 86 (2012) 094040 [arXiv:1209.4872] [INSPIRE].ADSGoogle Scholar
  25. [25]
    J.A. Aguilar-Saavedra, A. Juste and F. Rubbo, Boosting the \( t\overline{t} \) charge asymmetry, Phys. Lett. B 707 (2012) 92 [arXiv:1109.3710] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Probing the Tevatron \( t\overline{t} \) asymmetry at LHC, JHEP 05 (2011) 034 [arXiv:1103.2765] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5 : Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].ADSGoogle Scholar
  30. [30]
    ATLAS collaboration, Measurement of the inclusive \( t\overline{t}\gamma \) cross section with the ATLAS detector, ATLAS-CONF-2011-153 (2011).
  31. [31]
    CMS collaboration, Measurement of the inclusive top-quark pair + photon production cross section in the muon + jets channel in pp collisions at 8 TeV, CMS-PAS-TOP-13-011.
  32. [32]
    U. Baur, A. Juste, L.H. Orr and D. Rainwater, Probing electroweak top quark couplings at hadron colliders, Phys. Rev. D 71 (2005) 054013 [hep-ph/0412021] [INSPIRE].ADSGoogle Scholar
  33. [33]
    K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings, Nucl. Phys. B 804 (2008) 160 [arXiv:0803.3810] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R. Barcelo, A. Carmona, M. Masip and J. Santiago, Stealth gluons at hadron colliders, Phys. Lett. B 707 (2012) 88 [arXiv:1106.4054] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    G. Marques Tavares and M. Schmaltz, Explaining the tt asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].ADSGoogle Scholar
  39. [39]
    E. Álvarez, L. Da Rold, J.I.S. Vietto and A. Szynkman, Phenomenology of a light gluon resonance in top-physics at Tevatron and LHC, JHEP 09 (2011) 007 [arXiv:1107.1473] [INSPIRE].CrossRefGoogle Scholar
  40. [40]
    J.A. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011) 228 [arXiv:1107.2120] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    G.Z. Krnjaic, Very Light Axigluons and the Top Asymmetry, Phys. Rev. D 85 (2012) 014030 [arXiv:1109.0648] [INSPIRE].ADSGoogle Scholar
  42. [42]
    C. Gross, G. Marques Tavares, M. Schmaltz and C. Spethmann, Light axigluon explanation of the Tevatron \( t\overline{t} \) asymmetry and multijet signals at the LHC, Phys. Rev. D 87 (2013) 014004 [arXiv:1209.6375] [INSPIRE].ADSGoogle Scholar
  43. [43]
    M. Gresham, J. Shelton and K.M. Zurek, Open windows for a light axigluon explanation of the top forward-backward asymmetry, JHEP 03 (2013) 008 [arXiv:1212.1718] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    J.A. Aguilar-Saavedra, work in preparation.Google Scholar
  45. [45]
    E. Álvarez, E. Coluccio Leskow, J. Drobnak and J.F. Kamenik, Leptonic Monotops at LHC, Phys. Rev. D 89 (2014) 014016 [arXiv:1310.7600] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J.A. Aguilar-Saavedra, W. Bernreuther and Z.G. Si, Collider-independent top quark forward-backward asymmetries: standard model predictions, Phys. Rev. D 86 (2012) 115020 [arXiv:1209.6352] [INSPIRE].ADSGoogle Scholar
  47. [47]
    A. Falkowski, M.L. Mangano, A. Martin, G. Perez and J. Winter, Data driving the top quark forward-backward asymmetry with a lepton-based handle, Phys. Rev. D 87 (2013) 034039 [arXiv:1212.4003] [INSPIRE].ADSGoogle Scholar
  48. [48]
    A. Carmona et al., From Tevatrons top and lepton-based asymmetries to the LHC, arXiv:1401.2443 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. A. Aguilar-Saavedra
    • 1
  • E. Álvarez
    • 2
  • A. Juste
    • 3
    • 4
  • F. Rubbo
    • 4
  1. 1.Departamento de Física Teórica y del CosmosUniversidad de GranadaGranadaSpain
  2. 2.CONICET, IFIBA Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  4. 4.Institut de Física d’Altes Energies (IFAE)BarcelonaSpain

Personalised recommendations