Entanglement between two interacting CFTs and generalized holographic entanglement entropy

  • Ali Mollabashi
  • Noburo Shiba
  • Tadashi Takayanagi
Open Access


In this paper we discuss behaviors of entanglement entropy between two interacting CFTs and its holographic interpretation using the AdS/CFT correspondence. We explicitly perform analytical calculations of entanglement entropy between two free scalar field theories which are interacting with each other in both static and time-dependent ways. We also conjecture a holographic calculation of entanglement entropy between two interacting \( \mathcal{N} \) = 4 super Yang-Mills theories by introducing a minimal surface in the S5 direction, instead of the AdS5 direction. This offers a possible generalization of holographic entanglement entropy.


AdS-CFT Correspondence Field Theories in Lower Dimensions 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].ADSMathSciNetGoogle Scholar
  2. [2]
    M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    J. Eisert, M. Cramer and M. Plenio, Area laws for the entanglement entropyA review, Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    J.I. Latorre and A. Riera, A short review on entanglement in quantum spin systems, J. Phys. A 42 (2009) 4002 [arXiv:0906.1499].MathSciNetGoogle Scholar
  5. [5]
    N. Shiba and T. Takayanagi, Volume law for the entanglement entropy in non-local QFTs, JHEP 02 (2014) 033 [arXiv:1311.1643] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    J.L. Karczmarek and P. Sabella-Garnier, Entanglement entropy on the fuzzy sphere, JHEP 03 (2014) 129 [arXiv:1310.8345] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006) 010404 [quant-ph/0503219] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].CrossRefGoogle Scholar
  11. [11]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  14. [14]
    T. Takayanagi, Entanglement entropy from a holographic viewpoint, Class. Quant. Grav. 29 (2012) 153001 [arXiv:1204.2450] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    R.C. Myers and A. Sinha, Seeing a c-theorem with holography, Phys. Rev. D 82 (2010) 046006 [arXiv:1006.1263] [INSPIRE].ADSGoogle Scholar
  16. [16]
    R.C. Myers and A. Sinha, Holographic c-theorems in arbitrary dimensions, JHEP 01 (2011) 125 [arXiv:1011.5819] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys. Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [cond-mat/0510613].ADSCrossRefGoogle Scholar
  21. [21]
    S. Furukawa and Y.B. Kim, Entanglement entropy between two coupled Tomonaga-Luttinger liquids, Phys. Rev. B 83 (2011) 085112 [arXiv:1009.3016] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    C. Xu, Entanglement entropy of coupled conformal field theories and Fermi liquids, Phys. Rev. B 84 (2011) 125119 [arXiv:1102.5345] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    X. Chen and E. Fradkin, Quantum entanglement and thermal reduced density matrices in fermion and spin systems on ladders, J. Stat. Mech. 2013 (2013) P08013 [arXiv:1305.6538] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  24. [24]
    R. Lundgren, Y. Fuji, S. Furukawa and M. Oshikawa, Entanglement spectra between coupled Tomonaga-Luttinger liquids: Applications to ladder systems and topological phases, Phys. Rev. B 88 (2013) 245137 [arXiv:1310.0829].ADSCrossRefGoogle Scholar
  25. [25]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].ADSzbMATHMathSciNetGoogle Scholar
  26. [26]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  29. [29]
    M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  30. [30]
    R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86 (2012) 046009 [arXiv:1203.6619] [INSPIRE].ADSGoogle Scholar
  31. [31]
    V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114 [arXiv:1204.1698] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    H. Matsueda, M. Ishihara and Y. Hashizume, Tensor network and a black hole, Phys. Rev. D 87 (2013) 066002 [arXiv:1208.0206] [INSPIRE].ADSGoogle Scholar
  34. [34]
    M. Nozaki, S. Ryu and T. Takayanagi, Holographic geometry of entanglement renormalization in quantum field theories, JHEP 10 (2012) 193 [arXiv:1208.3469] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Mollabashi, M. Nozaki, S. Ryu and T. Takayanagi, Holographic geometry of cMERA for quantum quenches and finite temperature, JHEP 03 (2014) 098 [arXiv:1311.6095] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, arXiv:1212.5183 [INSPIRE].
  37. [37]
    J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55 [hep-th/9401072] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    C. Bachas, J. de Boer, R. Dijkgraaf and H. Ooguri, Permeable conformal walls and holography, JHEP 06 (2002) 027 [hep-th/0111210] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Recknagel and V. Schomerus, Boundary deformation theory and moduli spaces of D-branes, Nucl. Phys. B 545 (1999) 233 [hep-th/9811237] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    P. Di Vecchia and A. Liccardo, D-branes in string theory. 1., NATO Adv. Study Inst. Ser. C. Math. Phys. Sci. 556 (2000) 1 [hep-th/9912161] [INSPIRE].Google Scholar
  42. [42]
    P. Di Vecchia and A. Liccardo, D-branes in string theory. 2., hep-th/9912275 [INSPIRE].
  43. [43]
    J.L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nucl. Phys. B 324 (1989) 581 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    M. Nozaki, T. Numasawa and T. Takayanagi, Quantum entanglement of local operators in conformal field theories, Phys. Rev. Lett. 112 (2014) 111602 [arXiv:1401.0539] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Quantum dimension as entanglement entropy in 2D CFTs, arXiv:1403.0702 [INSPIRE].
  46. [46]
    M. Nozaki, Notes on quantum entanglement of local operators, in preparation.Google Scholar
  47. [47]
    P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems, J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  48. [48]
    P. Calabrese and J. Cardy, Entanglement and correlation functions following a local quench: a conformal field theory approach, J. Stat. Mech. (2007) P10004 [arXiv:0708.3750].
  49. [49]
    E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
  50. [50]
    E. Kiritsis, Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals, JHEP 11 (2006) 049 [hep-th/0608088] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    O. Aharony, A.B. Clark and A. Karch, The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D 74 (2006) 086006 [hep-th/0608089] [INSPIRE].ADSMathSciNetGoogle Scholar
  52. [52]
    E. Kiritsis and V. Niarchos, Interacting string multi-verses and holographic instabilities of massive gravity, Nucl. Phys. B 812 (2009) 488 [arXiv:0808.3410] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    P. Kraus, F. Larsen and S.P. Trivedi, The Coulomb branch of gauge theory from rotating branes, JHEP 03 (1999) 003 [hep-th/9811120] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    L. Susskind and E. Witten, The holographic bound in Anti-de Sitter space, hep-th/9805114 [INSPIRE].
  55. [55]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  58. [58]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE].
  59. [59]
    P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].ADSGoogle Scholar
  60. [60]
    V. Balasubramanian, A. Bernamonti, N. Copland, B. Craps and F. Galli, Thermalization of mutual and tripartite information in strongly coupled two dimensional conformal field theories, Phys. Rev. D 84 (2011) 105017 [arXiv:1110.0488] [INSPIRE].ADSGoogle Scholar
  61. [61]
    M. Headrick, General properties of holographic entanglement entropy, JHEP 03 (2014) 085 [arXiv:1312.6717] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  63. [63]
    S. Gubser, I.R. Klebanov and A. Peet, Entropy and temperature of black 3-branes, Phys. Rev. D 54 (1996) 3915 [hep-th/9602135] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    D. Berenstein, Large-N BPS states and emergent quantum gravity, JHEP 01 (2006) 125 [hep-th/0507203] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    P. Buividovich and M. Polikarpov, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B 670 (2008) 141 [arXiv:0806.3376] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  66. [66]
    H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D 89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].ADSGoogle Scholar
  67. [67]
    D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281 [hep-th/9503016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D 85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].ADSGoogle Scholar
  69. [69]
    S.N. Solodukhin, Remarks on effective action and entanglement entropy of Maxwell field in generic gauge, JHEP 12 (2012) 036 [arXiv:1209.2677] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    W. Donnelly and A.C. Wall, Do gauge fields really contribute negatively to black hole entropy?, Phys. Rev. D 86 (2012) 064042 [arXiv:1206.5831] [INSPIRE].ADSGoogle Scholar
  71. [71]
    G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99 (2007) 220405 [cond-mat/0512165] [INSPIRE].ADSCrossRefGoogle Scholar
  72. [72]
    G. Vidal, Entanglement renormalization: an introduction, arXiv:0912.1651.
  73. [73]
    G. Evenbly and G. Vidal, Quantum criticality with the multi-scale entanglement renormalization ansatz, arXiv:1109.5334.
  74. [74]
    J. Haegeman, T.J. Osborne, H. Verschelde and F. Verstraete, Entanglement renormalization for quantum fields in real space, Phys. Rev. Lett. 110 (2013) 100402 [arXiv:1102.5524] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    G. Galloway, K. Schleich, D. Witt and E. Woolgar, The AdS/CFT correspondence conjecture and topological censorship, Phys. Lett. B 505 (2001) 255 [hep-th/9912119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Ali Mollabashi
    • 1
    • 2
  • Noburo Shiba
    • 2
  • Tadashi Takayanagi
    • 2
    • 3
  1. 1.School of physics, Institute for Research in Fundamental Sciences (IPM)TehranIran
  2. 2.Yukawa Institute for Theoretical Physics (YITP)Kyoto UniversityKyotoJapan
  3. 3.Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)University of TokyoKashiwaJapan

Personalised recommendations