Advertisement

AdS 3/CFT 2, finite-gap equations and massless modes

  • Thomas Lloyd
  • Bogdan StefanskiJr
Open Access
Article

Abstract

It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 × M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 × M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 × M 7.

Keywords

AdS-CFT Correspondence Integrable Equations in Physics Penrose limit and pp-wave background 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Beisert, C. Ahn, L.F. Alday, Z. Bajnok, J.M. Drummond et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    K. Zoubos, Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries, Lett. Math. Phys. 99 (2012) 375 [arXiv:1012.3998] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    J. Bagger and N. Lambert, Modeling Multiple M2s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    J. Bagger and N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    B. Stefanski Jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Gomis, D. Sorokin and L. Wulff, The Complete AdS 4 × CP 3 superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    M. Blau, J.M. Figueroa-O’Farrill, C. Hull and G. Papadopoulos, Penrose limits and maximal supersymmetry, Class. Quant. Grav. 19 (2002) L87 [hep-th/0201081] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04 (2002) 013 [hep-th/0202021][INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS 3 /CF T 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Cagnazzo and K. Zarembo, B-field in AdS 3 /CFT 2 Correspondence and Integrability, JHEP 11 (2012) 133 [Erratum ibid. 1304 (2013) 003] [arXiv:1209.4049] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    B. Hoare and A.A. Tseytlin, On string theory on AdS 3 × S 3 × T 4 with mixed 3-form flux: Tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    B. Hoare and A.A. Tseytlin, Massive S-matrix of AdS 3 × S 3 × T 4 superstring theory with mixed 3-form flux, Nucl. Phys. B 873 (2013) 395 [arXiv:1304.4099] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation in string theory in AdS 3 × S 3 × T 4 with mixed flux, Nucl. Phys. B 879 (2014) 318 [arXiv:1311.1794] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    H. Lü and J.F. Vazquez-Poritz, Penrose limits of nonstandard brane intersections, Class. Quant. Grav. 19 (2002) 4059 [hep-th/0204001] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  21. [21]
    Y. Hikida and Y. Sugawara, Superstrings on PP wave backgrounds and symmetric orbifolds, JHEP 06 (2002) 037 [hep-th/0205200] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    J. Gomis, L. Motl and A. Strominger, PP wave/CFT(2) duality, JHEP 11 (2002) 016 [hep-th/0206166] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    E. Gava and K.S. Narain, Proving the PP wave/CFT(2) duality, JHEP 12 (2002) 023 [hep-th/0208081] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    L. Sommovigo, Penrose limit of AdS 3 × S 3 × S 3 × S 1 and its associated σ-model, JHEP 07 (2003) 035 [hep-th/0305151] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    N. Seiberg and E. Witten, The D1/D5 system and singular CFT, JHEP 04 (1999) 017 [hep-th/9903224] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1998) 025001 [hep-th/9809065] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    J. de Boer, A. Pasquinucci and K. Skenderis, AdS/CFT dualities involving large 2 − D N =4 superconformal symmetry, Adv. Theor. Math. Phys. 3 (1999) 577 [hep-th/9904073] [INSPIRE].MATHMathSciNetGoogle Scholar
  28. [28]
    S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The Search for a holographic dual to AdS 3 × S 3 × S 3 × S 1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  29. [29]
    O. Ohlsson Sax and B. Stefanski Jr., Integrability, spin-chains and the AdS3/CFT2 correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].MathSciNetGoogle Scholar
  30. [30]
    O. Ohlsson Sax, B. Stefanski Jr. and A. Torrielli, On the massless modes of the AdS3/CFT2 integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic SU(1|1)2 S-matrix for AdS3/CFT2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for AdS3/CFT2, JHEP 04 (2013) 116 [arXiv:1212.0505] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    R. Borsato, O. Ohlsson Sax, A. Sfondrini, B. Stefanski and A. Torrielli, The all-loop integrable spin-chain for strings on AdS 3 × S 3 × T 4 : the massive sector, JHEP 08 (2013) 043 [arXiv:1303.5995] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  34. [34]
    N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 07 (2012) 159 [arXiv:1204.4742] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    J.R. David and B. Sahoo, Giant magnons in the D1 − D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    M.C. Abbott, Comment on Strings in AdS 3 × S 3 × S 3 × S 1 at One Loop, JHEP 02 (2013) 102 [arXiv:1211.5587] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    M.C. Abbott, The AdS 3 × S 3 × S 3 × S 1 Hernández-López phases: a semiclassical derivation, J. Phys. A 46 (2013) 445401 [arXiv:1306.5106] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A.A. Tseytlin, Quantum corrections to spinning superstrings in AdS 3 × S 3 × M 4 : determining the dressing phase, JHEP 04 (2013) 006 [arXiv:1211.6090] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    M. Beccaria and G. Macorini, Quantum corrections to short folded superstring in AdS 3 × S 3 × M 4, JHEP 03 (2013) 040 [arXiv:1212.5672] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  40. [40]
    P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    P. Sundin and L. Wulff, Worldsheet scattering in AdS 3 /CF T 2, JHEP 07 (2013) 007 [arXiv:1302.5349] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    P. Sundin and L. Wulff, The low energy limit of the AdS 3 × S 3 × M 4 spinning string, JHEP 10 (2013) 111 [arXiv:1306.6918] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    J.R. David and B. Sahoo, S-matrix for magnons in the D1 − D5 system, JHEP 10 (2010) 112 [arXiv:1005.0501] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    C. Ahn and D. Bombardelli, Exact S-matrices for AdS 3 /CF T 2, Int. J. Mod. Phys. A 28 (2013) 1350168 [arXiv:1211.4512] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    R. Borsato, O.O. Sax, A. Sfondrini, B. Stefanski Jr. and A. Torrielli, Dressing phases of AdS3/CFT2, Phys. Rev. D 88 (2013) 066004 [arXiv:1306.2512] [INSPIRE].ADSGoogle Scholar
  46. [46]
    L. Bianchi, V. Forini and B. Hoare, Two-dimensional S-matrices from unitarity cuts, JHEP 07 (2013) 088 [arXiv:1304.1798] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    O.T. Engelund, R.W. McKeown and R. Roiban, Generalized unitarity and the worldsheet S matrix in AdS n × S n × M 10−2n, JHEP 08 (2013) 023 [arXiv:1304.4281] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  48. [48]
    J.R. David and A. Sadhukhan, Classical integrability in the BTZ black hole, JHEP 08 (2011) 079 [arXiv:1105.0480] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    J.R. David, C. Kalousios and A. Sadhukhan, Generating string solutions in BTZ, JHEP 02 (2013) 013 [arXiv:1211.5382] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    N. Gromov, V. Kazakov, K. Sakai and P. Vieira, Strings as multi-particle states of quantum σ-models, Nucl. Phys. B 764 (2007) 15 [hep-th/0603043] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical/quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    K. Zarembo, Semiclassical Bethe Ansatz and AdS/CFT, Comptes Rendus Physique 5 (2004) 1081 [Fortsch. Phys. 53 (2005) 647] [hep-th/0411191] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  53. [53]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The Algebraic curve of classical superstrings on AdS 5 × S 5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  54. [54]
    S. Schäfer-Nameki, Review of AdS/CFT Integrability, Chapter II.4: The Spectral Curve, Lett. Math. Phys. 99 (2012) 169 [arXiv:1012.3989] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  55. [55]
    I. Bena, J. Polchinski and R. Roiban, Hidden symmetries of the AdS 5 × S 5 superstring, Phys. Rev. D 69 (2004) 046002 [hep-th/0305116] [INSPIRE].ADSMathSciNetGoogle Scholar
  56. [56]
    V.V. Serganova, Classification of real simple Lie superalgebras and symmetric superspaces, Funct. Anal. Appl. 17 (1983) 200 [INSPIRE].CrossRefMATHMathSciNetGoogle Scholar
  57. [57]
    K. Zarembo, Algebraic Curves for Integrable String Backgrounds, arXiv:1005.1342 [INSPIRE].
  58. [58]
    J. Sochocki, Theory of integral residues with some application (1868).Google Scholar
  59. [59]
    J. Plemelj, Riemannian classes of functions with given monodromy group, Monatshefte fur Mathematik und Physik 19 W (1908) 211.CrossRefMathSciNetGoogle Scholar
  60. [60]
    P.D. Lax, Integrals of Nonlinear Equations of Evolution and Solitary Waves, Commun. Pure Appl. Math. 21 (1968) 467.CrossRefMATHMathSciNetGoogle Scholar
  61. [61]
    N. Gromov and P. Vieira, The AdS 5 × S 5 superstring quantum spectrum from the algebraic curve, Nucl. Phys. B 789 (2008) 175 [hep-th/0703191] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    G. Jorjadze, J. Plefka and J. Pollok, Bosonic String Quantization in Static Gauge, J. Phys. A 45 (2012) 485401 [arXiv:1207.4368] [INSPIRE].MathSciNetGoogle Scholar
  63. [63]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, Complete spectrum of long operators in N =4 SYM at one loop, JHEP 07(2005)030[hep-th/0503200][INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    N. Gromov and P. Vieira, Complete 1-loop test of AdS/CFT, JHEP 04 (2008) 046 [arXiv:0709.3487] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS 2 × S(2) × T (6), J. Phys. A 44 (2011) 275401 [arXiv:1104.1793] [INSPIRE].ADSMathSciNetGoogle Scholar
  66. [66]
    A. Cagnazzo, D. Sorokin and L. Wulff, More on integrable structures of superstrings in AdS 4 × CP (3) and AdS 2 × S 2 × T (6) superbackgrounds, JHEP 01 (2012) 004 [arXiv:1111.4197] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  67. [67]
    J. Murugan, P. Sundin and L. Wulff, Classical and quantum integrability in AdS 2 /CF T 1, JHEP 01 (2013) 047 [arXiv:1209.6062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    A. Cagnazzo, D. Sorokin, A.A. Tseytlin and L. Wulff, Semiclassical equivalence of Green-Schwarz and Pure-Spinor/Hybrid formulations of superstrings in AdS 5 × S 5 and AdS 2 × S 2 x T(6), J. Phys. A 46 (2013) 065401 [arXiv:1211.1554] [INSPIRE].ADSMathSciNetGoogle Scholar
  69. [69]
    M.C. Abbott, J. Murugan, P. Sundin and L. Wulff, Scattering in AdS 2 /CFT 1 and the BES Phase, JHEP 10 (2013) 066 [arXiv:1308.1370] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  70. [70]
    M. Kruczenski, Spin chains and string theory, Phys. Rev. Lett. 93 (2004) 161602 [hep-th/0311203] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  71. [71]
    M. Kruczenski, A.V. Ryzhov and A.A. Tseytlin, Large spin limit of AdS 5 × S 5 string theory and low-energy expansion of ferromagnetic spin chains, Nucl. Phys. B 692 (2004) 3 [hep-th/0403120] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    R. Hernandez and E. Lopez, The SU(3) spin chain σ-model and string theory, JHEP 04 (2004) 052 [hep-th/0403139] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    B. Stefanski Jr. and A.A. Tseytlin, Large spin limits of AdS/CFT and generalized Landau-Lifshitz equations, JHEP 05 (2004) 042 [hep-th/0404133] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  74. [74]
    B. Stefanski Jr. and A.A. Tseytlin, Super spin chain coherent state actions and AdS 5 × S 5 superstring, Nucl. Phys. B 718 (2005) 83 [hep-th/0503185] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  75. [75]
    B. Stefanski Jr., Landau-Lifshitz σ-models, fermions and the AdS/CFT correspondence, JHEP 07 (2007) 009 [arXiv:0704.1460] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Centre for Mathematical ScienceCity University LondonLondonU.K.

Personalised recommendations