Comparing double string theory actions

  • L. De Angelis
  • G. Gionti S.J
  • R. Marotta
  • F. Pezzella
Open Access


Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.


Bosonic Strings String Duality 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J. Maharana, The Worldsheet Perspective of T-duality Symmetry in String Theory, Int. J. Mod. Phys. A 28 (2013) 1330011 [arXiv:1302.1719] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, arXiv:1306.2643 [INSPIRE].
  6. [6]
    S. Groot Nibbelink and P. Patalong, A Lorentz invariant doubled worldsheet theory, Phys. Rev. D 87 (2013) 041902 [arXiv:1207.6110] [INSPIRE].ADSGoogle Scholar
  7. [7]
    D.S. Berman, N.B. Copland and D.C. Thompson, Background Field Equations for the Duality Symmetric String, Nucl. Phys. B 791 (2008) 175 [arXiv:0708.2267] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    D.S. Berman and D.C. Thompson, Duality Symmetric Strings, Dilatons and O(d,d) Effective Actions, Phys. Lett. B 662 (2008) 279 [arXiv:0712.1121] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. Aldazabal, D. Marques and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    W. Siegel, Manifest Lorentz Invariance Sometimes Requires Nonlinearity, Nucl. Phys. B 238 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl. Phys. B 350 (1991) 395 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].CrossRefGoogle Scholar
  14. [14]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, (Non-)commutative closed string on T-dual toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    C.M. Hull, A Geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    P. Pasti, D.P. Sorokin and M. Tonin, On Lorentz invariant actions for chiral p forms, Phys. Rev. D 55 (1997) 6292 [hep-th/9611100] [INSPIRE].ADSMathSciNetGoogle Scholar
  17. [17]
    P. Pasti, D.P. Sorokin and M. Tonin, Space-time symmetries in duality symmetric models, Leuven Notes in Math. and Theor. Phys. 6 167 [hep-th/9509052] [INSPIRE].
  18. [18]
    S. Groot Nibbelink, F. Kurz and P. Patalong, Renormalization of a Lorentz invariant doubled worldsheet theory, arXiv:1308.4418 [INSPIRE].
  19. [19]
    E. Hackett-Jones and G. Moutsopoulos, Quantum mechanics of the doubled torus, JHEP 10 (2006) 062 [hep-th/0605114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    D.S. Berman and N.B. Copland, The String partition function in Hulls doubled formalism, Phys. Lett. B 649 (2007) 325 [hep-th/0701080] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    N.B. Copland, A Double σ-model for Double Field Theory, JHEP 04 (2012) 044 [arXiv:1111.1828] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  22. [22]
    N.B. Copland, Connecting T-duality invariant theories, Nucl. Phys. B 854 (2012) 575 [arXiv:1106.1888] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    O. Hohm, W. Siegel and B. Zwiebach, Doubled α -geometry, JHEP 02 (2014) 065 [arXiv:1306.2970] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Andriot, M. Larfors, D. Lüst and P. Patalong, A ten-dimensional action for non-geometric fluxes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    C.D.A. Blair, E. Malek and A.J. Routh, An O(D,D) Invariant Hamiltonian Action for the Superstring, arXiv:1308.4829 [INSPIRE].
  27. [27]
    P. Di Vecchia, A. Liccardo, R. Marotta, I. Pesando and F. Pezzella, Wrapped magnetized branes: two alternative descriptions?, JHEP 11 (2007) 100 [arXiv:0709.4149] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Floreanini and R. Jackiw, Self-dual Fields as Charge Density Solitons, Phys. Rev. Lett. 59 (1987) 1873 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    A.H. Chamseddine and J. Fröhlich, Two-dimensional Lorentz-Weyl anomaly and gravitational Chern-Simons theory, Commun. Math. Phys. 147 (1992) 549 [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    S.D. Avramis, J.-P. Derendinger and N. Prezas, Conformal chiral boson models on twisted doubled tori and non-geometric string vacua, Nucl. Phys. B 827 (2010) 281 [arXiv:0910.0431] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    P.A.M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series Number 2 (1964) [ISBN 0-486-41713-1].Google Scholar
  34. [34]
    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • L. De Angelis
    • 1
  • G. Gionti S.J
    • 2
  • R. Marotta
    • 3
  • F. Pezzella
    • 3
  1. 1.Dipartimento di FisicaUniversità degli Studi “Federico II” di NapoliNapoliItaly
  2. 2.Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward ObservatoryThe University Of ArizonaTucsonU.S.A
  3. 3.Istituto Nazionale di Fisica Nucleare, Sezione di NapoliNapoliItaly

Personalised recommendations