Advertisement

Nonlinear supersymmetry in the quantum Calogero model

  • Francisco Correa
  • Olaf Lechtenfeld
  • Mikhail Plyushchay
Open Access
Article

Abstract

It is long known that the rational Calogero model describing n identical particles on a line with inverse-square mutual interaction potential is quantum superintegrable. We review the (nonlinear) algebra of the conserved quantum charges and the intertwiners which relate the Liouville charges at couplings g and g±1. For integer values of g, these intertwiners give rise to additional conserved charges commuting with all Liouville charges and known since the 1990s. We give a direct construction of such a charge, the unique one being totally antisymmetric under particle permutations. It is of order \( \frac{1}{2} \) n(n−1)(2g−1) in the momenta and squares to a polynomial in the Liouville charges. With a natural \( \mathbb{Z} \) 2 grading, this charge extends the algebra of conserved charges to a nonlinear supersymmetric one. We provide explicit expressions for intertwiners, charges and their algebra in the cases of two, three and four particles.

Keywords

Integrable Equations in Physics Conformal and W Symmetry Extended Supersymmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971) 419 [Erratum ibid. 37 (1996) 3646] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    M.A. Olshanetsky and A.M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rept. 71 (1981) 313 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    M.A. Olshanetsky and A.M. Perelomov, Quantum integrable systems related to Lie algebras, Phys. Rept. 94 (1983) 313 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A.P. Polychronakos, Exchange operator formalism for integrable systems of particles, Phys. Rev. Lett. 69 (1992) 703 [hep-th/9202057] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  5. [5]
    A.P. Polychronakos, Physics and mathematics of Calogero particles, J. Phys. A 39 (2006) 12793 [hep-th/0607033] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    S. Wojciechowski, Superintegrability of the Calogero-Moser system, Phys. Lett. A 95 (1983) 279.ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    V.B. Kuznetsov, Hidden symmetry of the quantum Calogero-Moser system, Phys. Lett. A 218 (1996) 212 [solv-int/9509001] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    G. Barucchi and T. Regge, Conformal properties of a class of exactly solvable n body problems in space dimension one, J. Math. Phys. 18 (1977) 1149 [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    I.M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv. 32 (1977) 180.CrossRefMathSciNetGoogle Scholar
  10. [10]
    J.L. Burchnall and T.W. Chaundy, Commutative ordinary differential operators, Proc. London Math. Soc. s2-21 (1923) 420.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Proc. Royal Soc. London A 118 (1928) 557.Google Scholar
  12. [12]
    H.F. Baker, Note on the foregoing paper, Proc. Royal Soc. London A 118 (1928) 584.ADSCrossRefGoogle Scholar
  13. [13]
    E.L. Ince, Ordinary differential equations, Dover (1956).Google Scholar
  14. [14]
    I.M. Krichever, Commutative rings of ordinary linear differential operators, Funct. Anal. Appl. 12 (1978) 175.CrossRefGoogle Scholar
  15. [15]
    Yu.V. Brezhnev, Spectral/quadrature duality: Picard-Vessiot theory and finite-gap potentials, Contemporary Mathematics 563 (2012) 1 [arXiv:1011.1642].CrossRefMathSciNetGoogle Scholar
  16. [16]
    O.A. Chalykh and A.P. Veselov, Commutative rings of partial differential operators and Lie algebras, Commun. Math. Phys. 126 (1990) 597.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    O.A. Chalykh, K.L. Styrkas and A.P. Veselov, Algebraic integrability for the Schrödinger equation and finite reflection groups, Theor. Math. Phys. 94 (1993) 182.CrossRefMathSciNetGoogle Scholar
  18. [18]
    O.A. Chalykh and A.P. Veselov, Integrability in the theory of Schrödinger operator and harmonic analysis, Commun. Math. Phys. 152 (1993) 29.ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    O.A. Chalykh, Additional integrals of the generalized quantum Calogero-Moser system, Theor. Math. Phys. 109 (1996) 1269.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    Yu. Berest, Huygensprinciple and the bispectral problem, CRM Proceedings and Lecture Notes 14 (1998) 11.MathSciNetGoogle Scholar
  21. [21]
    O.A. Chalykh, M.V. Feigin and A.P. Veselov, Multidimensional Baker-Akhiezer functions and Huygensprinciple, Commun. Math. Phys. 206 (1999) 533 [math-ph/9903019].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. [22]
    M.V. Feigin and A.P. Veselov, Quasiinvariants of Coxeter groups and m-harmonic polynomials, Intern. Math. Res. Notices 10 (2002) 521 [math-ph/0105014].CrossRefMathSciNetGoogle Scholar
  23. [23]
    P. Etingof and V. Ginzburg, On m-quasiinvariants of Coxeter groups, Mosc. Math. J. 2 (2002) 555 [math/0106175].zbMATHMathSciNetGoogle Scholar
  24. [24]
    O.A. Chalykh, Algebro-geometric Schrödinger operators in many dimensions, Phil. Trans. R. Soc. A 366 (2008) 947.ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    C.F. Dunkl and Y. Xu, Orthogonal polynomials of several variables, Cambridge University Press (2001).Google Scholar
  26. [26]
    E.M. Opdam, Root systems and hypergeometric functions III, Comp. Math. 67 (1988) 21.zbMATHMathSciNetGoogle Scholar
  27. [27]
    E.M. Opdam, Root systems and hypergeometric functions IV, Comp. Math. 67 (1988) 191.zbMATHMathSciNetGoogle Scholar
  28. [28]
    G.J. Heckman, A remark on the Dunkl differential-difference operators, in Harmonic analysis on reductive groups, W. Barker and P. Sally eds., Progr. Math. 101 (1991) 181, Birkhäuser.Google Scholar
  29. [29]
    M. Feigin, O. Lechtenfeld and A. Polychronakos, The quantum angular Calogero-Moser model, JHEP 07 (2013) 162 [arXiv:1305.5841] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    T. Hakobyan, A. Nersessian and V. Yeghikyan, Cuboctahedric Higgs oscillator from the Calogero model, J. Phys. A 42 (2009) 205206 [arXiv:0808.0430] [INSPIRE].ADSMathSciNetGoogle Scholar
  31. [31]
    A. Fring, A note on the integrability of non-Hermitian extensions of Calogero-Moser-Sutherland models, Mod. Phys. Lett. A 21 (2006) 691 [hep-th/0511097] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    A. Fring, PT-symmetric deformations of integrable models, Phil. Trans. Roy. Soc. Lond. A 371 (2013) 20120046 [arXiv:1204.2291] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    F. Correa and M.S. Plyushchay, Spectral singularities in PT-symmetric periodic finite-gap systems, Phys. Rev. D 86 (2012) 085028 [arXiv:1208.4448] [INSPIRE].ADSGoogle Scholar
  34. [34]
    C. Leiva and M.S. Plyushchay, Superconformal mechanics and nonlinear supersymmetry, JHEP 10 (2003) 069 [hep-th/0304257] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Anabalon and M.S. Plyushchay, Interaction via reduction and nonlinear superconformal symmetry, Phys. Lett. B 572 (2003) 202 [hep-th/0306210] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  36. [36]
    F. Correa, M.A. del Olmo and M.S. Plyushchay, On hidden broken nonlinear superconformal symmetry of conformal mechanics and nature of double nonlinear superconformal symmetry, Phys. Lett. B 628 (2005) 157 [hep-th/0508223] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    F. Correa, V. Jakubsky and M.S. Plyushchay, Aharonov-Bohm effect on AdS 2 and nonlinear supersymmetry of reflectionless Pöschl-Teller system, Annals Phys. 324 (2009) 1078 [arXiv:0809.2854] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    M.S. Plyushchay and L.-M. Nieto, Self-isospectrality, mirror symmetry and exotic nonlinear supersymmetry, Phys. Rev. D 82 (2010) 065022 [arXiv:1007.1962] [INSPIRE].ADSGoogle Scholar
  39. [39]
    A. Arancibia, J.M. Guilarte and M.S. Plyushchay, Effect of scalings and translations on the supersymmetric quantum mechanical structure of soliton systems, Phys. Rev. D 87 (2013) 045009 [arXiv:1210.3666] [INSPIRE].ADSGoogle Scholar
  40. [40]
    A.A. Andrianov and M.V. Ioffe, Nonlinear supersymmetric quantum mechanics: concepts and realizations, J. Phys. A 45 (2012) 503001 [arXiv:1207.6799] [INSPIRE].MathSciNetGoogle Scholar
  41. [41]
    F. Calogero, Solution of a three-body problem in one-dimension, J. Math. Phys. 10 (1969) 2191 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    F. Calogero and C. Marchioro, Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse-square potentials, J. Math. Phys. 15 (1974) 1425 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    C.F. Dunkl, Some orthogonal polynomials in four variables, SIGMA 4 (2008) 82 [arXiv:0812.0063].MathSciNetGoogle Scholar
  44. [44]
    S. Krivonos, O. Lechtenfeld and K. Polovnikov, N = 4 superconformal n-particle mechanics via superspace, Nucl. Phys. B 817 (2009) 265 [arXiv:0812.5062] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  45. [45]
    S. Krivonos and O. Lechtenfeld, Many-particle mechanics with D(2, 1; α) superconformal symmetry, JHEP 02 (2011) 042 [arXiv:1012.4639] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    F. Correa, V. Jakubský, L.-M. Nieto and M.S. Plyushchay, Self-isospectrality, special supersymmetry and their effect on the band structure, Phys. Rev. Lett. 101 (2008) 030403 [arXiv:0801.1671] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Francisco Correa
    • 1
  • Olaf Lechtenfeld
    • 2
    • 3
  • Mikhail Plyushchay
    • 4
  1. 1.Centro de Estudios Científicos (CECs)ValdiviaChile
  2. 2.Institut für Theoretische Physik and Riemann Center for Geometry and PhysicsLeibniz Universität HannoverHannoverGermany
  3. 3.Centre for Quantum Engineering and Space-Time ResearchLeibniz Universität HannoverHannoverGermany
  4. 4.Departamento de FísicaUniversidad de Santiago de ChileSantiago 2Chile

Personalised recommendations