Multiphoton signatures of goldstini at the LHC

  • Gabriele Ferretti
  • Alberto MariottiEmail author
  • Kentarou Mawatari
  • Christoffer Petersson
Open Access


We study models of gauge mediated SUSY breaking with more than one hidden sector. In these models the neutralino sector of the MSSM is supplemented with additional light neutral fermions, the nearly massless gravitino and the massive pseudo-goldstini. For the case where the Bino is the lightest ordinary SUSY particle, its preferred decay is to a photon and the heaviest pseudo-goldstino, which generically cascades down to lighter pseudo-goldstini, or to the gravitino, in association with photons. This gives rise to multiphoton plus missing energy signatures at the LHC. We investigate in detail simplified models where the SUSY spectrum consists of the right-handed sleptons, a Bino-like neutralino, the pseudo-goldstini and the gravitino. We compare against existing LHC searches and show that the sensitivity to our models could be significantly improved by relaxing the kinematic cuts and requiring additional final state particles. We propose inclusive searches in the final states (≥3)γ + Open image in new window T and + + (≥2)γ + Open image in new window T , the former being sensitive to any production mode and the latter being optimized for slepton pair production. We show that they could lead to an observation (or strong constraints) already with the data set from LHC Run I, and present prospects for LHC Run II.


Supersymmetry Phenomenology 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  2. [2]
    C. Cheung, J. Mardon, Y. Nomura and J. Thaler, A definitive signal of multiple supersymmetry breaking, JHEP 07 (2010) 035 [arXiv:1004.4637] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    K. Benakli and C. Moura, Brane-worlds pseudo-goldstinos, Nucl. Phys. B 791 (2008) 125 [arXiv:0706.3127] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    N. Craig, J. March-Russell and M. McCullough, The goldstini variations, JHEP 10 (2010) 095 [arXiv:1007.1239] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. McCullough, Stimulated supersymmetry breaking, Phys. Rev. D 82 (2010) 115016 [arXiv:1010.3203] [INSPIRE].ADSGoogle Scholar
  6. [6]
    K.I. Izawa, Y. Nakai and T. Shimomura, Higgs portal to visible supersymmetry breaking, JHEP 03 (2011) 007 [arXiv:1101.4633] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    J. Thaler and Z. Thomas, Goldstini can give the Higgs a boost, JHEP 07 (2011) 060 [arXiv:1103.1631] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    C. Cheung, F. D’Eramo and J. Thaler, The spectrum of goldstini and modulini, JHEP 08 (2011) 115 [arXiv:1104.2600] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    D. Bertolini, K. Rehermann and J. Thaler, Visible supersymmetry breaking and an invisible Higgs, JHEP 04 (2012) 130 [arXiv:1111.0628] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    H.-C. Cheng, W.-C. Huang, I. Low and A. Menon, Goldstini as the decaying dark matter, JHEP 03 (2011) 019 [arXiv:1012.5300] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    R. Argurio, Z. Komargodski and A. Mariotti, Pseudo-goldstini in field theory, Phys. Rev. Lett. 107 (2011) 061601 [arXiv:1102.2386] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R. Argurio et al., Collider signatures of goldstini in gauge mediation, JHEP 06 (2012) 096 [arXiv:1112.5058] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    T. Liu, L. Wang and J.M. Yang, Higgs decay to goldstini and its observability at the LHC, Phys. Lett. B 726 (2013) 228 [arXiv:1301.5479] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M. McGarrie and G. Tallarita, Super-Higgs in superspace, arXiv:1201.4537 [INSPIRE].
  15. [15]
    M. Baryakhtar, N. Craig and K. Van Tilburg, Supersymmetry in the shadow of photini, JHEP 07 (2012) 164 [arXiv:1206.0751] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Spannowsky and C. Wymant, Making the most of MET: mass reconstruction from collimated decays, Phys. Rev. D 87 (2013) 074004 [arXiv:1301.0345] [INSPIRE].ADSGoogle Scholar
  17. [17]
    C. Wymant, Signs of SUSY, arXiv:1306.3117 [INSPIRE].
  18. [18]
    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].ADSGoogle Scholar
  19. [19]
    P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of general gauge mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    ATLAS collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718 (2012) 411 [arXiv:1209.0753] [INSPIRE].ADSGoogle Scholar
  21. [21]
    ATLAS collaboration, Search for supersymmetry in events with at least one photon, one lepton and large missing transverse momentum in proton-proton collision at a center-of-mass energy of 7 TeV with the ATLAS detector, ATLAS-CONF-2012-144, CERN, Geneva Switzerland (2012).
  22. [22]
    CMS collaboration, Search for electroweak production of charginos, neutralinos and sleptons using leptonic final states in pp collisions at 8 TeV, CMS-PAS-SUS-13-006, CERN, Geneva Switzerland (2013).
  23. [23]
    S. Dimopoulos, M. Dine, S. Raby and S.D. Thomas, Experimental signatures of low-energy gauge mediated supersymmetry breaking, Phys. Rev. Lett. 76 (1996) 3494 [hep-ph/9601367] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    S. Dimopoulos, S.D. Thomas and J.D. Wells, Sparticle spectroscopy and electroweak symmetry breaking with gauge mediated supersymmetry breaking, Nucl. Phys. B 488 (1997) 39 [hep-ph/9609434] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Ambrosanio, G.D. Kribs and S.P. Martin, Signals for gauge mediated supersymmetry breaking models at the CERN LEP-2 collider, Phys. Rev. D 56 (1997) 1761 [hep-ph/9703211] [INSPIRE].ADSGoogle Scholar
  26. [26]
    K.-M. Cheung, D.A. Dicus, B. Dutta and S. Nandi, Multilepton signatures of gauge mediated SUSY breaking at LEP-2, Phys. Rev. D 58 (1998) 015008 [hep-ph/9711216] [INSPIRE].ADSGoogle Scholar
  27. [27]
    H. Baer, P.G. Mercadante, X. Tata and Y.-L. Wang, The reach of Tevatron upgrades in gauge mediated supersymmetry breaking models, Phys. Rev. D 60 (1999) 055001 [hep-ph/9903333] [INSPIRE].ADSGoogle Scholar
  28. [28]
    S. Samuel and J. Wess, A superfield formulation of the nonlinear realization of supersymmetry and its coupling to supergravity, Nucl. Phys. B 221 (1983) 153 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio and R. Gatto, Nonlinear realization of supersymmetry algebra from supersymmetric constraint, Phys. Lett. B 220 (1989) 569 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Z. Komargodski and N. Seiberg, From linear SUSY to constrained superfields, JHEP 09 (2009) 066 [arXiv:0907.2441] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    I. Antoniadis, E. Dudas, D.M. Ghilencea and P. Tziveloglou, Non-linear MSSM, Nucl. Phys. B 841 (2010) 157 [arXiv:1006.1662] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    C. Petersson and A. Romagnoni, The MSSM Higgs sector with a dynamical goldstino supermultiplet, JHEP 02 (2012) 142 [arXiv:1111.3368] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    C. Petersson, A. Romagnoni and R. Torre, Higgs decay with monophoton + MET signature from low scale supersymmetry breaking, JHEP 10 (2012) 016 [arXiv:1203.4563] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    B. Bellazzini, C. Petersson and R. Torre, Photophilic Higgs from sgoldstino mixing, Phys. Rev. D 86 (2012) 033016 [arXiv:1207.0803] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C. Petersson, A. Romagnoni and R. Torre, Liberating Higgs couplings in supersymmetry, Phys. Rev. D 87 (2013) 013008 [arXiv:1211.2114] [INSPIRE].ADSGoogle Scholar
  36. [36]
    E. Dudas, C. Petersson and P. Tziveloglou, Low scale supersymmetry breaking and its LHC signatures, Nucl. Phys. B 870 (2013) 353 [arXiv:1211.5609] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  37. [37]
    E. Dudas, C. Petersson and R. Torre, Collider signatures of low scale supersymmetry breaking: a Snowmass 2013 white paper, arXiv:1309.1179 [INSPIRE].
  38. [38]
    T. Binoth et al., Automized squark-neutralino production to next-to-leading order, Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].ADSGoogle Scholar
  39. [39]
    CMS collaboration, Search for supersymmetry in events with photons and missing energy, CMS-PAS-SUS-12-018, CERN, Geneva Switzerland (2012).
  40. [40]
    CMS collaboration, Search for new physics in events with photons, jets and missing transverse energy in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 03 (2013) 111 [arXiv:1211.4784] [INSPIRE].ADSGoogle Scholar
  41. [41]
    CMS collaboration, Search for supersymmetry in events with photons and low missing transverse energy in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 719 (2013) 42 [arXiv:1210.2052] [INSPIRE].ADSGoogle Scholar
  42. [42]
    ATLAS collaboration, Search for direct-slepton and direct-chargino production in final states with two opposite-sign leptons, missing transverse momentum and no jets in 20 fb−1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-049, CERN, Geneva Switzerland (2013).
  43. [43]
    ATLAS collaboration, Search for dark matter candidates and large extra dimensions in events with a photon and missing transverse momentum in pp collision data at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. Lett. 110 (2013) 011802 [arXiv:1209.4625] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    CMS collaboration, Search for supersymmetry in events with a lepton, a photon and large missing transverse energy in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 06 (2011) 093 [arXiv:1105.3152] [INSPIRE].ADSGoogle Scholar
  45. [45]
    K. Mawatari, Associated production of light gravitinos at future linear colliders, arXiv:1202.0507 [INSPIRE].
  46. [46]
    K. Mawatari and Y. Takaesu, HELAS and MadGraph with goldstinos, Eur. Phys. J. C 71 (2011)1640 [arXiv:1101.1289] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, arXiv:1310.1921 [INSPIRE].
  48. [48]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    C. Degrande et al., UFOthe Universal Feynrules Output, Comput. Phys. Commun. 183 (2012)1201 [arXiv:1108.2040] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].CrossRefGoogle Scholar
  53. [53]
    E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 83 (2011) 052005 [arXiv:1012.4389] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J.A. Evans, Y. Kats, D. Shih and M.J. Strassler, Toward full LHC coverage of natural supersymmetry, arXiv:1310.5758 [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Gabriele Ferretti
    • 1
  • Alberto Mariotti
    • 2
    Email author
  • Kentarou Mawatari
    • 3
    • 5
  • Christoffer Petersson
    • 1
    • 4
    • 5
  1. 1.Department of Fundamental PhysicsChalmers University of TechnologyGöteborgSweden
  2. 2.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K
  3. 3.Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit BrusselBrusselsBelgium
  4. 4.Physique Théorique et MathématiqueUniversité Libre de BruxellesBrusselsBelgium
  5. 5.International Solvay InstitutesBrusselsBelgium

Personalised recommendations