Weak gauge boson radiation in parton showers

  • Jesper R. Christiansen
  • Torbjörn Sjöstrand
Open Access


The emission of W and Z gauge bosons off quarks is included in a traditional QCD + QED shower. The unitarity of the shower algorithm links the real radiation of the weak gauge bosons to the negative weak virtual corrections. The shower evolution process leads to a competition between QCD, QED and weak radiation, and allows for W and Z boson production inside jets. Various effects on LHC physics are studied, both at low and high transverse momenta, and effects at higher-energy hadron colliders are outlined.


Monte Carlo Simulations Hadronic Colliders 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    Z. Bern, L.J. Dixon, F. Febres Cordero, S. Höche, H. Ita et al., Next-to-Leading Order W +5-Jet Production at the LHC, Phys. Rev. D 88 (2013) 014025 [arXiv:1304.1253] [INSPIRE].ADSGoogle Scholar
  2. [2]
    M. Kuroda, G. Moultaka and D. Schildknecht, Direct one loop renormalization of SU(2) − L × U (1) − Y four fermion processes and running coupling constants, Nucl. Phys. B 350 (1991) 25 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    G. Degrassi and A. Sirlin, Gauge invariant selfenergies and vertex parts of the Standard Model in the pinch technique framework, Phys. Rev. D 46 (1992) 3104 [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Beccaria, G. Montagna, F. Piccinini, F.M. Renard and C. Verzegnassi, Rising bosonic electroweak virtual effects at high-energy e + e colliders, Phys. Rev. D 58 (1998) 093014 [hep-ph/9805250] [INSPIRE].ADSGoogle Scholar
  5. [5]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale:Strongweak interactions?, Nucl. Phys. B 589 (2000) 359 [hep-ph/0004071] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    A. Denner, Electroweak radiative corrections at high-energies, PoS(HEP2001)129 [hep-ph/0110155] [INSPIRE].
  8. [8]
    M. Melles, Electroweak radiative corrections in high-energy processes, Phys. Rept. 375 (2003) 219 [hep-ph/0104232] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    S. Moretti, M.R. Nolten and D.A. Ross, Weak corrections and high E(T) jets at Tevatron, Phys. Rev. D 74 (2006) 097301 [hep-ph/0503152] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Moretti, M.R. Nolten and D.A. Ross, Weak corrections to four-parton processes, Nucl. Phys. B 759 (2006) 50 [hep-ph/0606201] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    P. Ciafaloni and D. Comelli, The Importance of weak bosons emission at LHC, JHEP 09 (2006) 055 [hep-ph/0604070] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    U. Baur, Weak Boson Emission in Hadron Collider Processes, Phys. Rev. D 75 (2007) 013005 [hep-ph/0611241] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Banfi, G.P. Salam and G. Zanderighi, Accurate QCD predictions for heavy-quark jets at the Tevatron and LHC, JHEP 07 (2007) 026 [arXiv:0704.2999] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J.H. Kuhn, A. Scharf and P. Uwer, Weak effects in b-jet production at hadron colliders, Phys. Rev. D 82 (2010) 013007 [arXiv:0909.0059] [INSPIRE].ADSGoogle Scholar
  15. [15]
    G. Bell, J.H. Kuhn and J. Rittinger, Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region, Eur. Phys. J. C 70 (2010) 659 [arXiv:1004.4117] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Dittmaier, A. Huss and C. Speckner, Weak radiative corrections to dijet production at hadron colliders, JHEP 11 (2012) 095 [arXiv:1210.0438] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    W.J. Stirling and E. Vryonidou, Electroweak corrections and Bloch-Nordsieck violations in 2-to-2 processes at the LHC, JHEP 04 (2013) 155 [arXiv:1212.6537] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.M. Campbell, K. Hatakeyama, J. Huston, F. Petriello, J.R. Andersen et al., Report of the Snowmass 2013 energy frontier QCD working group, arXiv:1310.5189 [INSPIRE].
  19. [19]
    A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Hoche et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011) 145 [arXiv:1101.2599] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A Brief Introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and collider physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 8 (1996) 1 [INSPIRE].Google Scholar
  23. [23]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Gustafson and U. Pettersson, Dipole Formulation of QCD Cascades, Nucl. Phys. B 306 (1988) 746 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    T. Sjöstrand, A Model for Initial State Parton Showers, Phys. Lett. B 157 (1985) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].ADSGoogle Scholar
  27. [27]
    R. Corke and T. Sjöstrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011) 032 [arXiv:1011.1759] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Bengtsson and T. Sjöstrand, Coherent Parton Showers Versus Matrix Elements: Implications of PETRA - PEP Data, Phys. Lett. B 185 (1987) 435 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    E. Norrbin and T. Sjöstrand, QCD radiation off heavy particles, Nucl. Phys. B 603 (2001) 297 [hep-ph/0010012] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett. B 449 (1999) 313 [hep-ph/9812455] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP 11 (2007) 070 [arXiv:0709.2092] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    D0 collaboration, V.M. Abazov et al., Measurement of the ratios of the Z/γ + ≥ n jet production cross sections to the total inclusive Z/γ cross section in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96-TeV, Phys. Lett. B 658 (2008) 112 [hep-ex/0608052] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    CMS collaboration, Jet Production Rates in Association with W and Z Bosons in pp Collisions at \( \sqrt{s} \) = 7 TeV, JHEP 01 (2012) 010 [arXiv:1110.3226] [INSPIRE].ADSGoogle Scholar
  35. [35]
    ATLAS collaboration, Measurement of the production cross section of jets in association with a Z boson in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 07 (2013) 032 [arXiv:1304.7098] [INSPIRE].ADSGoogle Scholar
  36. [36]
    L. Carloni, J. Rathsman and T. Sjöstrand, Discerning Secluded Sector gauge structures, JHEP 04 (2011) 091 [arXiv:1102.3795] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    R.K. Ellis, G. Marchesini and B.R. Webber, Soft Radiation in Parton Parton Scattering, Nucl. Phys. B 286 (1987) 643 [Erratum ibid. B 294 (1987) 1180] [INSPIRE].
  39. [39]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G.P. Salam, Towards Jetography, Eur. Phys. J. C 67 (2010) 637 [arXiv:0906.1833] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J. Pumplin, D.R. Stump, J. Huston, H.L. Lai, P.M. Nadolsky et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    ATLAS collaboration, Study of jets produced in association with a W boson in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 092002 [arXiv:1201.1276] [INSPIRE].ADSGoogle Scholar
  44. [44]
    A. Buckley, J. Butterworth, L. Lönnblad, D. Grellscheid, H. Hoeth et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].CrossRefGoogle Scholar
  47. [47]
    L. Lönnblad and S. Prestel, Matching Tree-Level Matrix Elements with Interleaved Showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].CrossRefGoogle Scholar
  48. [48]
    L. Lönnblad and S. Prestel, Unitarising Matrix Element + Parton Shower merging, JHEP 02 (2013) 094 [arXiv:1211.4827] [INSPIRE].CrossRefGoogle Scholar
  49. [49]
    L. Lönnblad and S. Prestel, Merging Multi-leg NLO Matrix Elements with Parton Showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Theoretical High Energy Physics, Department of Astronomy and Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations