Entanglement entropy and higher spin holography in AdS3

Open Access
Article

Abstract

A holographic correspondence has been recently developed between higher spin theories in three-dimensional anti-de Sitter space (AdS3) and two-dimensional Conformal Field Theories (CFTs) with extended symmetries. A class of such dualities involves SL(N, R) × SL(N, R) Chern-Simons gauge theories in the (2 + 1)-dimensional bulk space-time, and CFTs with \( {{\mathcal{W}}_N} \) symmetry algebras on the (1 + 1)-dimensional boundary. The topological character of the bulk theory forces one to reconsider standard geometric notions such as black hole horizons and entropy, as well as the usual holographic dictionary. Motivated by this challenge, in this note we present a proposal to compute entanglement entropy in the \( {{\mathcal{W}}_N} \) CFTs via holographic methods. In particular, we introduce a functional constructed from Wilson lines in the bulk Chern-Simons theory that captures the entanglement entropy in the CFTs dual to standard AdS3 gravity, corresponding to SL(2, R) × SL(2, R) gauge group, and admits an immediate generalization to the higher spin case. We explicitly evaluate this functional for several known solutions of the bulk theory, including charged black holes dual to thermal CFT states carrying higher spin charge, and show that it reproduces expected features of entanglement entropy, study whether it obeys strong subadditivity, and moreover show that it reduces to the thermal entropy in the appropriate limit.

Keywords

Gauge-gravity correspondence AdS-CFT Correspondence Conformal and W Symmetry 

References

  1. [1]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
  2. [2]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  4. [4]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  5. [5]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    E.S. Fradkin and M.A. Vasiliev, On the gravitational interaction of massless higher spin fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E.S. Fradkin and M.A. Vasiliev, Cubic interaction in extended theories of massless higher spin fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    S. Giombi and X. Yin, The higher spin/vector model duality, J. Phys. A 46 (2013) 214003 [arXiv:1208.4036] [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].ADSGoogle Scholar
  11. [11]
    J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    H.W.J. Bloete, J.L. Cardy and M.P. Nightingale, Conformal invariance, the central charge and universal finite size amplitudes at criticality, Phys. Rev. Lett. 56 (1986) 742 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    C. Holzhey, F. Larsen and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424 (1994) 443 [hep-th/9403108] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 06 (2004) P06002 [hep-th/0405152] [INSPIRE].Google Scholar
  15. [15]
    A. Strominger, Black hole entropy from near horizon microstates, JHEP 02 (1998) 009 [hep-th/9712251] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    S. Carlip, Conformal field theory, (2 + 1)-dimensional gravity and the BTZ black hole, Class. Quant. Grav. 22 (2005) R85 [gr-qc/0503022] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    P. Kraus, Lectures on black holes and the AdS 3 /CFT 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].
  21. [21]
    T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT, arXiv:1303.7221 [INSPIRE].
  22. [22]
    M.P. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    M.R. Gaberdiel, R. Gopakumar and A. Saha, Quantum W -symmetry in AdS 3, JHEP 02 (2011) 004 [arXiv:1009.6087] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    J. de Boer, Six-dimensional supergravity on S 3 × AdS 3 and 2D conformal field theory, Nucl. Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    J. de Boer and J.I. Jottar, Thermodynamics of higher spin black holes in AdS 3, JHEP 01 (2014) 023 [arXiv:1302.0816] [INSPIRE].CrossRefGoogle Scholar
  29. [29]
    M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [arXiv:1103.4304] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  30. [30]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, to appear.Google Scholar
  31. [31]
    A. Achucarro and P.K. Townsend, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  32. [32]
    E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  33. [33]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [INSPIRE].
  34. [34]
    A. Maloney and E. Witten, Quantum gravity partition functions in three dimensions, JHEP 02 (2010) 029 [arXiv:0712.0155] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  36. [36]
    V.G. Drinfeld and V.V. Sokolov, Lie algebras and equations of Korteweg-de Vries type, J. Sov. Math. 30 (1984) 1975 [INSPIRE].CrossRefGoogle Scholar
  37. [37]
    M. Bañados, Three-dimensional quantum geometry and black holes, hep-th/9901148 [INSPIRE].
  38. [38]
    M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  39. [39]
    F.A. Bais, T. Tjin and P. van Driel, Covariantly coupled chiral algebras, Nucl. Phys. B 357 (1991) 632 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. de Boer and T. Tjin, The relation between quantum W algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    J. de Boer and T. Tjin, Quantization and representation theory of finite W algebras, Commun. Math. Phys. 158 (1993) 485 [hep-th/9211109] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  42. [42]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [arXiv:1106.4788] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black holes and singularity resolution in higher spin gravity, JHEP 01 (2012) 031 [arXiv:1110.4117] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  44. [44]
    J. de Boer and J. Goeree, W gravity from Chern-Simons theory, Nucl. Phys. B 381 (1992) 329 [hep-th/9112060] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. De Boer and J. Goeree, Covariant W gravity and its moduli space from gauge theory, Nucl. Phys. B 401 (1993) 369 [hep-th/9206098] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    A.B. Zamolodchikov, Infinite additional symmetries in two-dimensional conformal quantum field theory, Theor. Math. Phys. 65 (1985) 1205 [Teor. Mat. Fiz. 65 (1985) 347] [INSPIRE].CrossRefMathSciNetGoogle Scholar
  47. [47]
    M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Black holes in three dimensional higher spin gravity: a review, J. Phys. A 46 (2013) 214001 [arXiv:1208.5182] [INSPIRE].ADSMathSciNetGoogle Scholar
  48. [48]
    M. Gary, D. Grumiller and R. Rashkov, Towards non-AdS holography in 3-dimensional higher spin gravity, JHEP 03 (2012) 022 [arXiv:1201.0013] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    H. Afshar, M. Gary, D. Grumiller, R. Rashkov and M. Riegler, Non-AdS holography in 3-dimensional higher spin gravitygeneral recipe and example, JHEP 11 (2012) 099 [arXiv:1209.2860] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96 (2006) 110404 [hep-th/0510092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  51. [51]
    M. Levin and X.-G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (2006) 110405 [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J. Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].MathSciNetGoogle Scholar
  53. [53]
    M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].ADSMathSciNetGoogle Scholar
  54. [54]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  55. [55]
    D.V. Fursaev, Proof of the holographic formula for entanglement entropy, JHEP 09 (2006) 018 [hep-th/0606184] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  56. [56]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  57. [57]
    P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42 (2009) 504005 [arXiv:0905.4013] [INSPIRE].MathSciNetGoogle Scholar
  58. [58]
    T. Azeyanagi, T. Nishioka and T. Takayanagi, Near extremal black hole entropy as entanglement entropy via AdS 2 /CFT 1, Phys. Rev. D 77 (2008) 064005 [arXiv:0710.2956] [INSPIRE].ADSMathSciNetGoogle Scholar
  59. [59]
    M. Bañados, R. Canto and S. Theisen, The action for higher spin black holes in three dimensions, JHEP 07 (2012) 147 [arXiv:1204.5105] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E.H. Lieb and M.B. Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, J. Math. Phys. 14 (1973) 1938 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  61. [61]
    T. Hirata and T. Takayanagi, AdS/CFT and strong subadditivity of entanglement entropy, JHEP 02 (2007) 042 [hep-th/0608213] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  62. [62]
    A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, arXiv:1211.3494 [INSPIRE].
  63. [63]
    R. Callan, J.-Y. He and M. Headrick, Strong subadditivity and the covariant holographic entanglement entropy formula, JHEP 06 (2012) 081 [arXiv:1204.2309] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  64. [64]
    P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [arXiv:1108.2567] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  65. [65]
    A. Perez, D. Tempo and R. Troncoso, Higher spin gravity in 3D: black holes, global charges and thermodynamics, Phys. Lett. B 726 (2013) 444 [arXiv:1207.2844] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    G. Compère and W. Song, W symmetry and integrability of higher spin black holes, JHEP 09 (2013) 144 [arXiv:1306.0014] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    J.R. David, M. Ferlaino and S.P. Kumar, Thermodynamics of higher spin black holes in 3D, JHEP 11 (2012) 135 [arXiv:1210.0284] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  68. [68]
    A. Perez, D. Tempo and R. Troncoso, Higher spin black hole entropy in three dimensions, JHEP 04 (2013) 143 [arXiv:1301.0847] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  69. [69]
    A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Towards metric-like higher-spin gauge theories in three dimensions, J. Phys. A 46 (2013) 214017 [arXiv:1208.1851] [INSPIRE].ADSMathSciNetGoogle Scholar
  70. [70]
    J. Cardy and P. Calabrese, Unusual corrections to scaling in entanglement entropy, J. Stat. Mech. 04 (2010) P04023 [arXiv:1002.4353] [INSPIRE].Google Scholar
  71. [71]
    P. Kraus and T. Ugajin, An entropy formula for higher spin black holes via conical singularities, JHEP 05 (2013) 160 [arXiv:1302.1583] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  72. [72]
    M.R. Gaberdiel, T. Hartman and K. Jin, Higher spin black holes from CFT, JHEP 04 (2012) 103 [arXiv:1203.0015] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  73. [73]
    P. Kraus and E. Perlmutter, Probing higher spin black holes, JHEP 02 (2013) 096 [arXiv:1209.4937] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations