Advertisement

On super form factors of half-BPS operators in \( \mathcal{N} \) =4 super Yang-Mills

  • Brenda Penante
  • Bill Spence
  • Gabriele Travaglini
  • Congkao Wen
Open Access
Article

Abstract

We compute form factors of half-BPS operators in \( \mathcal{N} \) = 4 super Yang-Mills dual to massive Kaluza-Klein modes in supergravity. These are appropriate supersymmetrisations \( {{\mathcal{T}}_k} \) of the scalar operators Tr (ϕ k ) for any k, which for k = 2 give the chiral part of the stress-tensor multiplet operator. Using harmonic superspace, we derive simple Ward identities for these form factors, which we then compute perturbatively at tree level and one loop. We propose a novel on-shell recursion relation which links form factors with different numbers of fields. Using this, we conjecture a general formula for the n-point MHV form factors of \( {{\mathcal{T}}_k} \) for arbitrary k and n. Finally, we use supersymmetric generalised unitarity to derive compact expressions for all one-loop MHV form factors of \( {{\mathcal{T}}_k} \) in terms of one-loop triangles and finite two-mass easy box functions.

Keywords

Scattering Amplitudes Supersymmetric gauge theory Extended Supersymmetry Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    W.L. van Neerven, Infrared Behavior of On-shell Form-factors in a N = 4 Supersymmetric Yang-Mills Field Theory, Z. Phys. C 30 (1986) 595 [INSPIRE].ADSGoogle Scholar
  2. [2]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  3. [3]
    J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system, JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Brandhuber, B. Spence, G. Travaglini and G. Yang, Form Factors in N = 4 Super Yang-Mills and Periodic Wilson Loops, JHEP 01 (2011) 134 [arXiv:1011.1899] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  5. [5]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM, JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Brandhuber, O. Gurdogan, R. Mooney, G. Travaglini and G. Yang, Harmony of Super Form Factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV Form Factors in Superspace for N =4 SYM Theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  8. [8]
    J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4 SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Gehrmann, J.M. Henn and T. Huber, The three-loop form factor in N = 4 super Yang-Mills, JHEP 03 (2012) 101 [arXiv:1112.4524] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  10. [10]
    A. Brandhuber, G. Travaglini and G. Yang, Analytic two-loop form factors in N = 4 SYM, JHEP 05 (2012) 082 [arXiv:1201.4170] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  11. [11]
    L.V. Bork, On NMHV form factors in N = 4 SYM theory from generalized unitarity, JHEP 01 (2013) 049 [arXiv:1203.2596] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  12. [12]
    O.T. Engelund and R. Roiban, Correlation functions of local composite operators from generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    R.H. Boels, B.A. Kniehl, O.V. Tarasov and G. Yang, Color-kinematic Duality for Form Factors, JHEP 02 (2013) 063 [arXiv:1211.7028] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    A. Brandhuber, O. Gurdogan, D. Korres, R. Mooney and G. Travaglini, Two-loop Sudakov Form Factor in ABJM, JHEP 11 (2013) 022 [arXiv:1305.2421] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    D. Young, Form Factors of Chiral Primary Operators at Two Loops in ABJ(M), JHEP 06 (2013) 049 [arXiv:1305.2422] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    L. Bianchi and M.S. Bianchi, Non-planarity through unitarity in ABJM, arXiv:1311.6464 [INSPIRE].
  17. [17]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    M.L. Mangano, S.J. Parke and Z. Xu, Duality and Multi - Gluon Scattering, Nucl. Phys. B 298 (1988) 653 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    Z. Gao and G. Yang, Y-system for form factors at strong coupling in AdS 5 and with multi-operator insertions in AdS 3, JHEP 06 (2013) 105 [arXiv:1303.2668] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  21. [21]
    L.F. Alday, J. Maldacena, A. Sever and P. Vieira, Y-system for Scattering Amplitudes, J. Phys. A 43 (2010) 485401 [arXiv:1002.2459] [INSPIRE].MathSciNetGoogle Scholar
  22. [22]
    N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, A.B. Goncharov, A. Postnikov et al., Scattering Amplitudes and the Positive Grassmannian, arXiv:1212.5605 [INSPIRE].
  23. [23]
    Z. Bern, L.J. Dixon, D.A. Kosower, R. Roiban, M. Spradlin et al., The Two-Loop Six-Gluon MHV Amplitude in Maximally Supersymmetric Yang-Mills Theory, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Hexagon Wilson loop = six-gluon MHV amplitude, Nucl. Phys. B 815 (2009) 142 [arXiv:0803.1466] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  26. [26]
    V. Del Duca, C. Duhr and V.A. Smirnov, The Two-Loop Hexagon Wilson Loop in N = 4 SYM, JHEP 05 (2010) 084 [arXiv:1003.1702] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Gehrmann, M. Jaquier, E.W.N. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Remarks on Higgs Boson Interactions with Nucleons, Phys. Lett. B 78 (1978) 443 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  31. [31]
    A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, Energy-energy correlations in N = 4 SYM, Phys. Rev. Lett. 112 (2014) 071601 [arXiv:1311.6800] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, Event shapes in N = 4 super-Yang-Mills theory, arXiv:1309.1424 [INSPIRE].
  33. [33]
    A.V. Belitsky, S. Hohenegger, G.P. Korchemsky, E. Sokatchev and A. Zhiboedov, From correlation functions to event shapes, arXiv:1309.0769 [INSPIRE].
  34. [34]
    G. Arutyunov, F.A. Dolan, H. Osborn and E. Sokatchev, Correlation functions and massive Kaluza-Klein modes in the AdS/CFT correspondence, Nucl. Phys. B 665 (2003) 273 [hep-th/0212116] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  35. [35]
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, Unconstrained N = 2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace, Class. Quant. Grav. 1 (1984) 469 [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Galperin, E. Ivanov, V. Ogievetsky and E. Sokatchev, Harmonic superspace, Cambridge University Press (2001).Google Scholar
  37. [37]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part I, Nucl. Phys. B 869 (2013) 329 [arXiv:1103.3714] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  38. [38]
    B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, The super-correlator/super-amplitude duality: Part II, Nucl. Phys. B 869 (2013) 378 [arXiv:1103.4353] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  39. [39]
    V.P. Nair, A Current Algebra for Some Gauge Theory Amplitudes, Phys. Lett. B 214 (1988) 215 [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  41. [41]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  42. [42]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  43. [43]
    A. Brandhuber, P. Heslop and G. Travaglini, A Note on dual superconformal symmetry of the N = 4 super Yang-Mills S-matrix, Phys. Rev. D 78 (2008) 125005 [arXiv:0807.4097] [INSPIRE].ADSMathSciNetGoogle Scholar
  44. [44]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Generalized unitarity for N =4 super-amplitudes, Nucl. Phys. B 869 (2013) 452 [arXiv:0808.0491] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  46. [46]
    N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in Twistor Space, JHEP 03 (2010) 110 [arXiv:0903.2110] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  47. [47]
    C. Boucher-Veronneau and A.J. Larkoski, Constructing Amplitudes from Their Soft Limits, JHEP 09 (2011) 130 [arXiv:1108.5385] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Nandan and C. Wen, Generating All Tree Amplitudes in N = 4 SYM by Inverse Soft Limit, JHEP 08 (2012) 040 [arXiv:1204.4841] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  49. [49]
    A. Brandhuber, B.J. Spence and G. Travaglini, One-loop gauge theory amplitudes in N = 4 super Yang-Mills from MHV vertices, Nucl. Phys. B 706 (2005) 150 [hep-th/0407214] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  50. [50]
    I. Bena, Z. Bern, D.A. Kosower and R. Roiban, Loops in twistor space, Phys. Rev. D 71 (2005) 106010 [hep-th/0410054] [INSPIRE].ADSMathSciNetGoogle Scholar
  51. [51]
    A. Brandhuber, P. Heslop and G. Travaglini, Proof of the Dual Conformal Anomaly of One-Loop Amplitudes in N = 4 SYM, JHEP 10 (2009) 063 [arXiv:0906.3552] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  52. [52]
    D.A. Kosower, All order collinear behavior in gauge theories, Nucl. Phys. B 552 (1999) 319 [hep-ph/9901201] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  54. [54]
    G. Duplancic and B. Nizic, Dimensionally regulated one loop box scalar integrals with massless internal lines, Eur. Phys. J. C 20 (2001) 357 [hep-ph/0006249] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Brenda Penante
    • 1
  • Bill Spence
    • 1
  • Gabriele Travaglini
    • 1
  • Congkao Wen
    • 1
  1. 1.Centre for Research in String Theory, School of Physics and AstronomyQueen Mary University of LondonLondonU.K.

Personalised recommendations