Advertisement

Reggeon field theory for large Pomeron loops

  • Tolga Altinoluk
  • Alex Kovner
  • Eugene Levin
  • Michael LublinskyEmail author
Open Access
Article

Abstract

We analyze the range of applicability of the high energy Reggeon Field Theory H RFT derived in [1]. We show that this theory is valid as long as at any intermediate value of rapidity η throughout the evolution at least one of the colliding objects is dilute. Importantly, at some values of η the dilute object could be the projectile, while at others it could be the target, so that H RFT does not reduce to either H JIMWLK or H KLWMIJ . When both objects are dense, corrections to the evolution not accounted for in [1] become important. The same limitation applies to other approaches to high energy evolution available today, such as for example [2, 3] and [4-6]. We also show that, in its regime of applicability H RFT can be simplified. We derive the simpler version of H RFT and in the large N c limit rewrite it in terms of the Reggeon creation and annihilation operators. The resulting H RFT is explicitly self dual and provides the generalization of the Pomeron calculus developed in [4-6] by including higher Reggeons in the evolution. It is applicable for description of ‘large’ Pomeron loops, namely Reggeon graphs where all the splittings occur close in rapidity to one dilute object (projectile), while all the merging close to the other one (target). Additionally we derive, in the same regime expressions for single and double inclusive gluon production (where the gluons are not separated by a large rapidity interval) in terms of the Reggeon degrees of freedom.

Keywords

Resummation QCD Deep Inelastic Scattering 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    T. Altinoluk, A. Kovner, M. Lublinsky and J. Peressutti, QCD Reggeon Field Theory for every day: Pomeron loops included, JHEP 03 (2009) 109 [arXiv:0901.2559] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions, Phys. Rev. D 78 (2008) 054019 [arXiv:0804.2630] [INSPIRE].ADSGoogle Scholar
  3. [3]
    F. Gelis, T. Lappi and R. Venugopalan, High energy factorization in nucleus-nucleus collisions. II. Multigluon correlations, Phys. Rev. D 78 (2008) 054020 [arXiv:0807.1306] [INSPIRE].ADSGoogle Scholar
  4. [4]
    M. Braun, Nucleus-nucleus scattering in perturbative QCD with N c → ∞, Phys. Lett. B 483 (2000) 115 [hep-ph/0003004] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    M. Braun, Nucleus nucleus interaction in the perturbative QCD, Eur. Phys. J. C 33 (2004) 113 [hep-ph/0309293] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Braun, Conformal invariant Pomeron interaction in the perurbative QCD with large-N c, Phys. Lett. B 632 (2006) 297 [hep-ph/0512057] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    V.S. Fadin, E. Kuraev and L. Lipatov, On the Pomeranchuk Singularity in Asymptotically Free Theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    L. Lipatov, The Bare Pomeron in Quantum Chromodynamics, Sov. Phys. JETP 63 (1986) 904 [INSPIRE].Google Scholar
  9. [9]
    E. Kuraev, L. Lipatov and V.S. Fadin, The Pomeranchuk Singularity in Nonabelian Gauge Theories, Sov. Phys. JETP 45 (1977) 199 [INSPIRE].ADSMathSciNetGoogle Scholar
  10. [10]
    Ya.Ya. Balitsky and L.N. Lipatov, The Pomeranchuk Singularity in Quantum Chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 22.Google Scholar
  11. [11]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Bartels and M. Wusthoff, The Triple Regge limit of diffractive dissociation in deep inelastic scattering, Z. Phys. C 66 (1995) 157 [INSPIRE].ADSGoogle Scholar
  13. [13]
    J. Bartels and C. Ewerz, Unitarity corrections in high-energy QCD, JHEP 09 (1999) 026 [hep-ph/9908454] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    J. Bartels, L. Lipatov and M. Wusthoff, Conformal invariance of the transition vertex 2 → 4 gluons, Nucl. Phys. B 464 (1996) 298 [hep-ph/9509303] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Lotter, Phenomenology of the BFKL Pomeron and unitarity corrections at low x, hep-ph/9705288 [INSPIRE].
  16. [16]
    M. Braun and G. Vacca, Triple Pomeron vertex in the limit N c → ∞, Eur. Phys. J. C 6 (1999) 147 [hep-ph/9711486] [INSPIRE].ADSGoogle Scholar
  17. [17]
    J. Bartels, M. Braun and G. Vacca, Pomeron vertices in perturbative QCD in diffractive scattering, Eur. Phys. J. C 40 (2005) 419 [hep-ph/0412218] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Bartels, High-Energy Behavior in a Nonabelian Gauge Theory. 2. First Corrections to T (n → m) Beyond the Leading LNS Approximation, Nucl. Phys. B 175 (1980) 365 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    J. Kwiecinski and M. Praszalowicz, Three Gluon Integral Equation and Odd c Singlet Regge Singularities in QCD, Phys. Lett. B 94 (1980) 413 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    J. Bartels, Unitarity corrections to the Lipatov Pomeron and the small x region in deep inelastic scattering in QCD, Phys. Lett. B 298 (1993) 204 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Bartels, Unitarity corrections to the Lipatov Pomeron and the four gluon operator in deep inelastic scattering in QCD, Z. Phys. C 60 (1993) 471 [INSPIRE].ADSGoogle Scholar
  22. [22]
    L. Lipatov, Small x physics in perturbative QCD, Phys. Rept. 286 (1997) 131 [hep-ph/9610276] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    L. Faddeev and G. Korchemsky, High-energy QCD as a completely integrable model, Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Korchemsky, Quasiclassical QCD Pomeron, Nucl. Phys. B 462 (1996) 333 [hep-th/9508025] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    G. Korchemsky, Bethe ansatz for QCD Pomeron, Nucl. Phys. B 443 (1995) 255 [hep-ph/9501232] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    G. Korchemsky, Integrable structures and duality in high-energy QCD, Nucl. Phys. B 498 (1997) 68 [hep-th/9609123] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  27. [27]
    G. Korchemsky, J. Kotanski and A. Manashov, Solution of the multi-Reggeon compound state problem in multicolor QCD, Phys. Rev. Lett. 88 (2002) 122002 [hep-ph/0111185] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    S.E. Derkachov, G. Korchemsky and A. Manashov, Noncompact Heisenberg spin magnets from high-energy QCD. 3. Quasiclassical approach, Nucl. Phys. B 661 (2003) 533 [hep-th/0212169] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  29. [29]
    G. Korchemsky, Review of AdS/CFT Integrability, Chapter IV.4: Integrability in QCD and N¡4 SYM, Lett. Math. Phys. 99 (2012) 425 [arXiv:1012.4000] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. [30]
    L. Lipatov, Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models, JETP Lett. 59 (1994) 596 [INSPIRE].ADSGoogle Scholar
  31. [31]
    H. De Vega and L. Lipatov, Interaction of reggeized gluons in the Baxter-Sklyanin representation, Phys. Rev. D 64 (2001) 114019 [hep-ph/0107225] [INSPIRE].ADSGoogle Scholar
  32. [32]
    H. de Vega and L. Lipatov, Exact resolution of the Baxter equation for reggeized gluon interactions, Phys. Rev. D 66 (2002) 074013 [hep-ph/0204245] [INSPIRE].ADSGoogle Scholar
  33. [33]
    H. Navelet and R.B. Peschanski, Conformal blocks in the QCD Pomeron formalism, hep-ph/9611396 [INSPIRE].
  34. [34]
    H. Navelet and R.B. Peschanski, The Elastic QCD dipole amplitude at one loop, Phys. Rev. Lett. 82 (1999) 1370 [hep-ph/9809474] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A. Bialas, H. Navelet and R.B. Peschanski, The QCD triple Pomeron coupling from string amplitudes, Phys. Rev. D 57 (1998) 6585 [hep-ph/9711442] [INSPIRE].ADSGoogle Scholar
  36. [36]
    L. Gribov, E. Levin and M. Ryskin, Semihard Processes in QCD, Phys. Rept. 100 (1983) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    A.H. Mueller and J.-W. Qiu, Gluon Recombination and Shadowing at Small Values of x, Nucl. Phys. B 268 (1986) 427 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    A. Kovner, M. Lublinsky and U. Wiedemann, From bubbles to foam: Dilute to dense evolution of hadronic wave function at high energy, JHEP 06 (2007) 075 [arXiv:0705.1713] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The Wilson renormalization group for low x physics: Towards the high density regime, Phys. Rev. D 59 (1998) 014014 [hep-ph/9706377] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Jalilian-Marian, A. Kovner and H. Weigert, The Wilson renormalization group for low x physics: Gluon evolution at finite parton density, Phys. Rev. D 59 (1998) 014015 [hep-ph/9709432] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Kovner and J.G. Milhano, Vector potential versus color charge density in low x evolution, Phys. Rev. D 61 (2000) 014012 [hep-ph/9904420] [INSPIRE].ADSGoogle Scholar
  43. [43]
    A. Kovner, J.G. Milhano and H. Weigert, Relating different approaches to nonlinear QCD evolution at finite gluon density, Phys. Rev. D 62 (2000) 114005 [hep-ph/0004014] [INSPIRE].ADSGoogle Scholar
  44. [44]
    H. Weigert, Unitarity at small Bjorken x, Nucl. Phys. A 703 (2002) 823 [hep-ph/0004044] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. 1., Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    E. Iancu, A. Leonidov and L.D. McLerran, The Renormalization group equation for the color glass condensate, Phys. Lett. B 510 (2001) 133 [hep-ph/0102009] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    E. Ferreiro, E. Iancu, A. Leonidov and L. McLerran, Nonlinear gluon evolution in the color glass condensate. 2., Nucl. Phys. A 703 (2002) 489 [hep-ph/0109115] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    A. Kovner and M. Lublinsky, In pursuit of Pomeron loops: The JIMWLK equation and the Wess-Zumino term, Phys. Rev. D 71 (2005) 085004 [hep-ph/0501198] [INSPIRE].ADSGoogle Scholar
  49. [49]
    T. Altinoluk et al., QCD Reggeon Calculus From KLWMIJ/JIMWLK Evolution: Vertices, Reggeization and All, JHEP 09 (2013) 115 [arXiv:1306.2794] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    A. Kovner and M. Lublinsky, From target to projectile and back again: Selfduality of high energy evolution, Phys. Rev. Lett. 94 (2005) 181603 [hep-ph/0502119] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Kovner and M. Lublinsky, Dense-dilute duality at work: Dipoles of the target, Phys. Rev. D 72 (2005) 074023 [hep-ph/0503155] [INSPIRE].ADSGoogle Scholar
  52. [52]
    A. Mueller, A. Shoshi and S. Wong, Extension of the JIMWLK equation in the low gluon density region, Nucl. Phys. B 715 (2005) 440 [hep-ph/0501088] [INSPIRE].ADSCrossRefGoogle Scholar
  53. [53]
    J. Bartels, L. Lipatov and G. Vacca, Interactions of reggeized gluons in the Mobius representation, Nucl. Phys. B 706 (2005) 391 [hep-ph/0404110] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    Y. Hatta, E. Iancu, K. Itakura and L. McLerran, Odderon in the color glass condensate, Nucl. Phys. A 760 (2005) 172 [hep-ph/0501171] [INSPIRE].ADSCrossRefGoogle Scholar
  55. [55]
    E. Iancu and D. Triantafyllopoulos, A Langevin equation for high energy evolution with Pomeron loops, Nucl. Phys. A 756 (2005) 419 [hep-ph/0411405] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    E. Iancu, G. Soyez and D. Triantafyllopoulos, On the probabilistic interpretation of the evolution equations with Pomeron loops in QCD, Nucl. Phys. A 768 (2006) 194 [hep-ph/0510094] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    Y. Hatta, E. Iancu, C. Marquet, G. Soyez and D. Triantafyllopoulos, Diffusive scaling and the high-energy limit of deep inelastic scattering in QCD at large-N c, Nucl. Phys. A 773 (2006) 95 [hep-ph/0601150] [INSPIRE].
  58. [58]
    I. Balitsky, High-energy effective action from scattering of QCD shock waves, Phys. Rev. D 72 (2005) 074027 [hep-ph/0507237] [INSPIRE].ADSGoogle Scholar
  59. [59]
    Y. Hatta, E. Iancu, L. McLerran, A. Stasto and D. Triantafyllopoulos, Effective Hamiltonian for QCD evolution at high energy, Nucl. Phys. A 764 (2006) 423 [hep-ph/0504182] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    E. Levin and M. Lublinsky, Towards a symmetric approach to high energy evolution: Generating functional with Pomeron loops, Nucl. Phys. A 763 (2005) 172 [hep-ph/0501173] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    E. Levin, J. Miller and A. Prygarin, Summing Pomeron loops in the dipole approach, Nucl. Phys. A 806 (2008) 245 [arXiv:0706.2944] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    E. Levin and J. Miller, The BFKL Pomeron calculus: summing enhanced diagrams, Nucl. Phys. A 884-885 (2012) 51 [arXiv:1111.3678] [INSPIRE].CrossRefGoogle Scholar
  63. [63]
    E. Levin, Dipole-dipole scattering in CGC/saturation approach at high energy: summing Pomeron loops, JHEP 11 (2013) 039 [arXiv:1308.5052] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    E. Avsar, G. Gustafson and L. Lönnblad, Energy conservation and saturation in small-x evolution, JHEP 07 (2005) 062 [hep-ph/0503181] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    A.H. Mueller and G. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Salam, Studies of unitarity at small x using the dipole formulation, Nucl. Phys. B 461 (1996) 512 [hep-ph/9509353] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    E. Iancu and A. Mueller, From color glass to color dipoles in high-energy onium onium scattering, Nucl. Phys. A 730 (2004) 460 [hep-ph/0308315] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    M. Kozlov and E. Levin, The Iancu-Muller factorization and high-energy asymptotic behaviour, Nucl. Phys. A 739 (2004) 291 [hep-ph/0401118] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    E. Laenen, E. Levin and A. Shuvaev, Anomalous dimensions of high twist operators in QCD at N → 1 and large Q 2, Nucl. Phys. B 419 (1994) 39 [hep-ph/9308294] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    J. Bartels and M. Ryskin, The Analytic structure of the anomalous dimension of the four gluon operator in deep inelastic scattering, Z. Phys. C 62 (1994) 425 [INSPIRE].ADSGoogle Scholar
  72. [72]
    J. Bartels, Unitarity corrections to the Lipatov Pomeron and the small x region in deep inelastic scattering in QCD, Phys. Lett. B 298 (1993) 204 [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    E. Levin, M. Ryskin and A. Shuvaev, Anomalous dimension of the twist four gluon operator and Pomeron cuts in deep inelastic scattering, Nucl. Phys. B 387 (1992) 589 [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    E. Brunet, B. Derrida, A. Mueller and S. Munier, A Phenomenological theory giving the full statistics of the position of fluctuating pulled fronts, Phys. Rev. E 73 (2006) 056126 [cond-mat/0512021] [INSPIRE].ADSGoogle Scholar
  75. [75]
    C. Marquet, G. Soyez and B.-W. Xiao, On the probability distribution of the stochastic saturation scale in QCD, Phys. Lett. B 639 (2006) 635 [hep-ph/0606233] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    M. Braun, On the collision of two projectiles on two targets in the BFKL approach, Eur. Phys. J. C 73 (2013) 2418 [arXiv:1301.4846] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    M. Braun, Inclusive cross-sections for gluon production in collision of two projectiles on two targets in the BFKL approach, Eur. Phys. J. C 73 (2013) 2511 [arXiv:1305.1712] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    T. Altinoluk, A. Kovner and M. Lublinsky, Inclusive Gluon Production in the QCD Reggeon Field Theory: Pomeron Loops Included, JHEP 03 (2009) 110 [arXiv:0901.2560] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    Y.V. Kovchegov and K. Tuchin, Inclusive gluon production in DIS at high parton density, Phys. Rev. D 65 (2002) 074026 [hep-ph/0111362] [INSPIRE].ADSGoogle Scholar
  80. [80]
    A. Kovner and M. Lublinsky, One gluon, two gluon: Multigluon production via high energy evolution, JHEP 11 (2006) 083 [hep-ph/0609227] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Kovner, M. Lublinsky and H. Weigert, Treading on the cut: Semi inclusive observables at high energy, Phys. Rev. D 74 (2006) 114023 [hep-ph/0608258] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A.H. Mueller, O(2, 1) Analysis of Single Particle Spectra at High-energy, Phys. Rev. D 2 (1970) 2963 [INSPIRE].ADSGoogle Scholar
  83. [83]
    E. Levin and A. Prygarin, Inclusive gluon production in the dipole approach: AGK cutting rules, Phys. Rev. C 78 (2008) 065202 [arXiv:0804.4747] [INSPIRE].ADSGoogle Scholar
  84. [84]
    A. Kovner and M. Lublinsky, The Yin and Yang of high energy chromodynamics: Scattering in black and white, Nucl. Phys. A 779 (2006) 220 [hep-ph/0604085] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    A. Kovner and M. Lublinsky, Odderon and seven Pomerons: QCD Reggeon field theory from JIMWLK evolution, JHEP 02 (2007) 058 [hep-ph/0512316] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J. Jalilian-Marian and Y.V. Kovchegov, Inclusive two-gluon and valence quark-gluon production in DIS and pA, Phys. Rev. D 70 (2004) 114017 [Erratum ibid. D 71 (2005) 079901] [hep-ph/0405266] [INSPIRE].ADSGoogle Scholar
  87. [87]
    R. Baier, A. Kovner, M. Nardi and U.A. Wiedemann, Particle correlations in saturated QCD matter, Phys. Rev. D 72 (2005) 094013 [hep-ph/0506126] [INSPIRE].ADSGoogle Scholar
  88. [88]
    A. Kovner and M. Lublinsky, Angular and long range rapidity correlations in particle production at high energy, Int. J. Mod. Phys. E 22 (2013) 1330001 [arXiv:1211.1928] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    K. Dusling and R. Venugopalan, Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions, Phys. Rev. D 87 (2013) 094034 [arXiv:1302.7018] [INSPIRE].ADSGoogle Scholar
  90. [90]
    K. Dusling and R. Venugopalan, Explanation of systematics of CMS p + Pb high multiplicity di-hadron data at \( \sqrt{{{s_{\mathrm{NN}}}}} \) = 5.02 TeV, Phys. Rev. D 87 (2013) 054014 [arXiv:1211.3701] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Tolga Altinoluk
    • 1
  • Alex Kovner
    • 2
  • Eugene Levin
    • 3
    • 4
  • Michael Lublinsky
    • 5
    Email author
  1. 1.Departamento de Física de Partículas and IGFAEUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Physics DepartmentUniversity of ConnecticutStorrsU.S.A
  3. 3.Departamento de FísicaUniversidad Técnica Federico Santa María, and Centro Científico-Tecnológico de ValparaísoValparaísoChile
  4. 4.Department of Particle PhysicsTel Aviv UniversityTel AvivIsrael
  5. 5.Physics DepartmentBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations