Thick-brane cosmology

Open Access
Article

Abstract

We search for time-dependent solutions for the 5-dimensional system of a scalar field canonically coupled to gravity. Time-independent and time-dependent scalar field configurations with the most general homogeneous and isotropic 4D metric are considered. For the case of time-independent scalar field, the time evolution of the scale factor is obtained for different values of the spatial curvature k = 0, ±1. In the case of time-dependent scalar field, two classes of solutions are discussed and an extension of the superpotential formalism is proposed.

Keywords

Large Extra Dimensions Cosmology of Theories beyond the SM Classical Theories of Gravity Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B 436 (1998) 257 [hep-ph/9804398] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Brane cosmological evolution in a bulk with cosmological constant, Phys. Lett. B 477 (2000) 285 [hep-th/9910219] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    P. Binetruy, C. Deffayet and D. Langlois, Nonconventional cosmology from a brane universe, Nucl. Phys. B 565 (2000) 269 [hep-th/9905012] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    J.M. Cline, C. Grojean and G. Servant, Cosmological expansion in the presence of extra dimensions, Phys. Rev. Lett. 83 (1999) 4245 [hep-ph/9906523] [INSPIRE].ADSCrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    C. Csáki, M. Graesser, C.F. Kolda and J. Terning, Cosmology of one extra dimension with localized gravity, Phys. Lett. B 462 (1999) 34 [hep-ph/9906513] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C. Csáki, M. Graesser, L. Randall and J. Terning, Cosmology of brane models with radion stabilization, Phys. Rev. D 62 (2000) 045015 [hep-ph/9911406] [INSPIRE].ADSGoogle Scholar
  10. [10]
    E.E. Flanagan, S.H.H. Tye and I. Wasserman, Cosmological expansion in the Randall-Sundrum brane world scenario, Phys. Rev. D 62 (2000) 044039 [hep-ph/9910498] [INSPIRE].ADSMathSciNetGoogle Scholar
  11. [11]
    P. Kanti, I.I. Kogan, K.A. Olive and M. Pospelov, Single brane cosmological solutions with a stable compact extra dimension, Phys. Rev. D 61 (2000) 106004 [hep-ph/9912266] [INSPIRE].ADSMathSciNetGoogle Scholar
  12. [12]
    P. Kanti, I.I. Kogan, K.A. Olive and M. Pospelov, Cosmological three-brane solutions, Phys. Lett. B 468 (1999) 31 [hep-ph/9909481] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    D. Bazeia, F.A. Brito and F.G. Costa, First-order framework and domain-wall/brane-cosmology correspondence, Phys. Lett. B 661 (2008) 179 [arXiv:0707.0680] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    M. Giovannini, Time-dependent gravitating solitons in five dimensional warped space-times, Phys. Rev. D 76 (2007) 124017 [arXiv:0708.1830] [INSPIRE].ADSMathSciNetGoogle Scholar
  15. [15]
    D.P. George, M. Trodden and R.R. Volkas, Extra-dimensional cosmology with domain-wall branes, JHEP 02 (2009) 035 [arXiv:0810.3746] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  16. [16]
    A. Kadosh, A. Davidson and E. Pallante, Slinky evolution of domain wall brane cosmology, Phys. Rev. D 86 (2012) 124015 [arXiv:1202.5255] [INSPIRE].ADSGoogle Scholar
  17. [17]
    O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    A. Ahmed and B. Grzadkowski, Brane modeling in warped extra-dimension, JHEP 01 (2013) 177 [arXiv:1210.6708] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Gremm, Thick domain walls and singular spaces, Phys. Rev. D 62 (2000) 044017 [hep-th/0002040] [INSPIRE].ADSGoogle Scholar
  20. [20]
    S. Kobayashi, K. Koyama and J. Soda, Thick brane worlds and their stability, Phys. Rev. D 65 (2002) 064014 [hep-th/0107025] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    A. Wang, Thick de Sitter 3 branes, dynamic black holes and localization of gravity, Phys. Rev. D 66 (2002) 024024 [hep-th/0201051] [INSPIRE].ADSGoogle Scholar
  22. [22]
    N. Sasakura, A de Sitter thick domain wall solution by elliptic functions, JHEP 02 (2002) 026 [hep-th/0201130] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  23. [23]
    V.I. Afonso, D. Bazeia and L. Losano, First-order formalism for bent brane, Phys. Lett. B 634 (2006) 526 [hep-th/0601069] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  24. [24]
    I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of TeV Little String Theory from Holography, Phys. Rev. Lett. 108 (2012) 081602 [arXiv:1102.4043] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Department of Physics and AstronomyUC RiversideRiversideU.S.A.

Personalised recommendations