Advertisement

Extracting effective Higgs couplings in the golden channel

  • Yi Chen
  • Roberto Vega-MoralesEmail author
Open Access
Article

Abstract

Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. To that end we first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states. We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. We demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. This framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.

Keywords

Higgs Physics Beyond Standard Model Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].ADSGoogle Scholar
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].ADSGoogle Scholar
  3. [3]
    C.A. Nelson, Correlation between decay planes in Higgs boson decays into W pair (into Z pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].ADSGoogle Scholar
  4. [4]
    A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].ADSGoogle Scholar
  5. [5]
    D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W , or \( t\overline{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].ADSGoogle Scholar
  6. [6]
    V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].ADSGoogle Scholar
  7. [7]
    T. Arens and L.M. Sehgal, Energy spectra and energy correlations in the decay HZZμ + μ μ + μ , Z. Phys. C 66 (1995) 89 [hep-ph/9409396][INSPIRE].ADSGoogle Scholar
  8. [8]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in HZZ + 1 1 + 2 2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    V.A. Kovalchuk, Model-independent analysis of CP-violation effects in decays of the Higgs boson into a pair of the W and Z bosons, J. Exp. Theor. Phys. 107 (2008) 774 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    Q.-H. Cao, C.B. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].ADSGoogle Scholar
  13. [13]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  14. [14]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  15. [15]
    J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].ADSGoogle Scholar
  17. [17]
    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  18. [18]
    D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  19. [19]
    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  20. [20]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    P. Avery et al., Precision studies of the Higgs boson decay channel HZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].ADSGoogle Scholar
  22. [22]
    J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, arXiv:1205.3434 [INSPIRE].
  23. [23]
    J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125-126 GeV, arXiv:1301.5404 [INSPIRE].
  25. [25]
    Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel hZZ → 4l, arXiv:1309.4171 [INSPIRE].
  26. [26]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Chen et al., The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC, Phys. Rev. D 89 (2014) 034002 [arXiv:1310.1397] [INSPIRE].ADSGoogle Scholar
  29. [29]
    G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in hZℓ + , arXiv:1310.2574 [INSPIRE].
  30. [30]
    Y. Chen et al., 8D likelihood effective Higgs couplings extraction framework in the golden channel, arXiv:1401.2077 [INSPIRE].
  31. [31]
    Y. Chen et al., Technical note for extracting Higgs effective couplings framework, technical note, in preparation (2013).Google Scholar
  32. [32]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs signal and background in the 2e2μ golden channel, JHEP 01 (2013) 182 [arXiv:1211.1959] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Jamin and M.E. Lautenbacher, TRACER: version 1.1: a Mathematica package for gamma algebra in arbitrary dimensions, Comput. Phys. Commun. 74 (1993) 265 [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    S. Wofram, Mathematica: technical computing software, (2012).Google Scholar
  39. [39]
    D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    Y. Chen and R. Vega-Morales, Scrutinizing the golden channel website, http://yichen.me/project/GoldenChannel/, (2013).
  41. [41]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    C. Zecher, T. Matsuura and J.J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].ADSGoogle Scholar
  43. [43]
    T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to ppZZ\( \ell \overline{\ell}{\ell^{\prime }}{{\overline{\ell}}^{\prime }} \), arXiv:0807.0024 [INSPIRE].
  44. [44]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    I. Low, J. Lykken and G. Shaughnessy, Have we observed the Higgs (imposter)?, Phys. Rev. D 86 (2012) 093012 [arXiv:1207.1093] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Physics DepartmentCalifornia Institute of TechnologyPasadenaU.S.A.
  2. 2.Laboratoire de Physique Théorique d’Orsay, UMR8627-CNRSOrsay CedexFrance
  3. 3.Fermi National Accelerator Laboratory (FNAL)BataviaU.S.A.
  4. 4.Department of Physics and AstronomyNorthwestern UniversityEvanstonU.S.A.

Personalised recommendations