A survey for low stau yields in the MSSM

  • Jan Heisig
  • Jörn Kersten
  • Boris Panes
  • Tania Robens
Open Access
Article

Abstract

We study the implications of LHC results for the abundance of long-lived staus after freeze-out from thermal equilibrium in a super-WIMP dark matter scenario. We classify regions in the MSSM parameter space according to the stau yield, considering all possible co-annihilation effects as well as the effects of resonances and large Higgs-sfermion couplings. Afterwards, we examine the viability of these regions after imposing experimental and theoretical constraints, in particular a Higgs mass around 125 GeV and null-searches for heavy stable charged particles (HSCP) at the LHC. We work in a pMSSM framework and perform a Monte Carlo scan over the parameter space. To interpret the HSCP searches in our scenario, we consider all potentially important superparticle production processes, developing a fast estimator for NLO cross sections for electroweak and strong production at the LHC. After applying all constraints, we find that stau yields below 10−14 occur only for resonant annihilation via a heavy Higgs in combination with either co-annihilation or large left-right stau mixing. We encounter allowed points with yields as low as 2 × 10−16, thus satisfying limits from big bang nucleosynthesis even for large stau lifetimes.

Keywords

Supersymmetry Phenomenology 

References

  1. [1]
    I.V. Falomkin et al., Low-energy \( \overline{p} \) 4 He annihilation and problems of the modern cosmology, GUT and SUSY models, Nuovo Cim. A 79 (1984) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    J.R. Ellis, J.E. Kim and D.V. Nanopoulos, Cosmological Gravitino Regeneration and Decay, Phys. Lett. B 145 (1984) 181 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    J.R. Ellis, D.V. Nanopoulos and S. Sarkar, The Cosmology of Decaying Gravitinos, Nucl. Phys. B 259 (1985) 175 [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    M. Bolz, W. Buchmüller and M. Plümacher, Baryon asymmetry and dark matter, Phys. Lett. B 443 (1998) 209 [hep-ph/9809381] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    P. Fayet, Experimental consequences of supersymmetry, in proceedings of 16th Rencontre de Moriond, J. Tran Thanh Van ed., vol. 1, Editions Frontieres (1981), pp. 347-367.Google Scholar
  6. [6]
    H. Pagels and J.R. Primack, Supersymmetry, Cosmology and New TeV Physics, Phys. Rev. Lett. 48 (1982) 223 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    T. Moroi, H. Murayama and M. Yamaguchi, Cosmological constraints on the light stable gravitino, Phys. Lett. B 303 (1993) 289 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    M. Pospelov, Particle physics catalysis of thermal Big Bang Nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    K. Jedamzik, Bounds on long-lived charged massive particles from Big Bang nucleosynthesis, JCAP 03 (2008) 008 [arXiv:0710.5153] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    M. Kawasaki, K. Kohri, T. Moroi and A. Yotsuyanagi, Big-Bang Nucleosynthesis and Gravitino, Phys. Rev. D 78 (2008) 065011 [arXiv:0804.3745] [INSPIRE].ADSGoogle Scholar
  11. [11]
    T. Asaka, K. Hamaguchi and K. Suzuki, Cosmological gravitino problem in gauge mediated supersymmetry breaking models, Phys. Lett. B 490 (2000) 136 [hep-ph/0005136] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    J. Pradler and F.D. Steffen, Thermal relic abundances of long-lived staus, Nucl. Phys. B 809 (2009) 318 [arXiv:0808.2462] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    M. Ratz, K. Schmidt-Hoberg and M.W. Winkler, A Note on the primordial abundance of stau NLSPs, JCAP 10 (2008) 026 [arXiv:0808.0829] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    CMS collaboration, Searches for long-lived charged particles in pp collisions at \( \sqrt{s} \) =7 and 8 TeV, JHEP 07 (2013) 122 [arXiv:1305.0491] [INSPIRE].ADSGoogle Scholar
  15. [15]
    W. Buchmüller, K. Hamaguchi, M. Ibe and T.T. Yanagida, Eluding the BBN constraints on the stable gravitino, Phys. Lett. B 643 (2006) 124 [hep-ph/0605164] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B.W. Lee and S. Weinberg, Cosmological Lower Bound on Heavy Neutrino Masses, Phys. Rev. Lett. 39 (1977) 165 [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    P. Binetruy, G. Girardi and P. Salati, Constraints on a System of Two Neutral Fermions From Cosmology, Nucl. Phys. B 237 (1984) 285 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J. Bernstein, L.S. Brown and G. Feinberg, The Cosmological Heavy Neutrino Problem Revisited, Phys. Rev. D 32 (1985) 3261 [INSPIRE].ADSGoogle Scholar
  19. [19]
    M. Srednicki, R. Watkins and K.A. Olive, Calculations of Relic Densities in the Early Universe, Nucl. Phys. B 310 (1988) 693 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191 [INSPIRE].ADSGoogle Scholar
  21. [21]
    P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991) 145 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    E.W. Kolb and M.S. Turner, The Early universe, Front. Phys. 69 (1990) 1.ADSMathSciNetGoogle Scholar
  23. [23]
    J. Edsjo and P. Gondolo, Neutralino relic density including coannihilations, Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361] [INSPIRE].ADSGoogle Scholar
  24. [24]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  25. [25]
    C.F. Berger, L. Covi, S. Kraml and F. Palorini, The Number density of a charged relic, JCAP 10 (2008) 005 [arXiv:0807.0211] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  27. [27]
    F.D. Steffen, Gravitino dark matter and cosmological constraints, JCAP 09 (2006) 001 [hep-ph/0605306] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Gherghetta, G.F. Giudice and A. Riotto, Nucleosynthesis bounds in gauge mediated supersymmetry breaking theories, Phys. Lett. B 446 (1999) 28 [hep-ph/9808401] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  30. [30]
    M. Drees and M.M. Nojiri, The Neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].ADSGoogle Scholar
  31. [31]
    R.L. Arnowitt and P. Nath, Cosmological constraints and SU(5) supergravity grand unification, Phys. Lett. B 299 (1993) 58 [Erratum ibid. B 307 (1993) 403] [hep-ph/9302317] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    H. Baer and M. Brhlik, Neutralino dark matter in minimal supergravity: Direct detection versus collider searches, Phys. Rev. D 57 (1998) 567 [hep-ph/9706509] [INSPIRE].ADSGoogle Scholar
  33. [33]
    H. Baer et al., Yukawa unified supersymmetric SO(10) model: Cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [INSPIRE].ADSGoogle Scholar
  34. [34]
    J.R. Ellis, T. Falk, G. Ganis, K.A. Olive and M. Srednicki, The CMSSM parameter space at large tan beta, Phys. Lett. B 510 (2001) 236 [hep-ph/0102098] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    A.B. Lahanas and V.C. Spanos, Implications of the pseudoscalar Higgs boson in determining the neutralino dark matter, Eur. Phys. J. C 23 (2002) 185 [hep-ph/0106345] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    M.S. Carena, M. Quirós and C.E.M. Wagner, Effective potential methods and the Higgs mass spectrum in the MSSM, Nucl. Phys. B 461 (1996) 407 [hep-ph/9508343] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    S. Heinemeyer, W. Hollik and G. Weiglein, Constraints on tan Beta in the MSSM from the upper bound on the mass of the lightest Higgs boson, JHEP 06 (2000) 009 [hep-ph/9909540] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    M. Endo, K. Hamaguchi and K. Nakaji, Probing High Reheating Temperature Scenarios at the LHC with Long-Lived Staus, JHEP 11 (2010) 004 [arXiv:1008.2307] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail and T.G. Rizzo, The New Look pMSSM with Neutralino and Gravitino LSPs, Eur. Phys. J. C 72 (2012) 2156 [arXiv:1206.4321] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  41. [41]
    A. Djouadi, M.M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon. B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].ADSGoogle Scholar
  42. [42]
    S. Kraml and D.T. Nhung, Three-body decays of sleptons in models with non-universal Higgs masses, JHEP 02 (2008) 061 [arXiv:0712.1986] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: Simulating Multi-Particle Processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    W. Beenakker, R. Hopker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    W. Beenakker, M. Klasen, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, The Production of charginos/neutralinos and sleptons at hadron colliders, Phys. Rev. Lett. 83 (1999) 3780 [Erratum ibid. 100 (2008) 029901] [hep-ph/9906298] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    T. Plehn, Measuring the MSSM Lagrangean, Czech. J. Phys. 55 (2005) B213 [hep-ph/0410063] [INSPIRE].Google Scholar
  48. [48]
    W. Beenakker, M. Krämer, T. Plehn, M. Spira and P.M. Zerwas, Stop production at hadron colliders, Nucl. Phys. B 515 (1998) 3 [hep-ph/9710451] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    W. Beenakker et al., Soft-gluon resummation for squark and gluino hadroproduction, JHEP 12 (2009) 041 [arXiv:0909.4418] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    W. Beenakker et al., Supersymmetric top and bottom squark production at hadron colliders, JHEP 08 (2010) 098 [arXiv:1006.4771] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    A. Kulesza and L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC, Phys. Rev. Lett. 102 (2009) 111802 [arXiv:0807.2405] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    A. Kulesza and L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC, Phys. Rev. D 80 (2009) 095004 [arXiv:0905.4749] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J. Heisig, Long-lived staus at the LHC, in proceedings of XLVII Rencontres de Moriond, 2012 [arXiv:1207.3058] [INSPIRE].
  54. [54]
    J. Heisig and J. Kersten, Long-lived staus from strong production in a simplified model approach, Phys. Rev. D 86 (2012) 055020 [arXiv:1203.1581] [INSPIRE].ADSGoogle Scholar
  55. [55]
    ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
  56. [56]
    CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005.
  57. [57]
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich and G. Weiglein, Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J. C 28 (2003) 133 [hep-ph/0212020] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs Sector and Fine-Tuning in the pMSSM, Phys. Rev. D 86 (2012) 075015 [arXiv:1206.5800] [INSPIRE].ADSGoogle Scholar
  59. [59]
    M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    ATLAS collaboration, Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 720 (2013) 277 [arXiv:1211.1597] [INSPIRE].ADSGoogle Scholar
  61. [61]
    CMS collaboration, Search for heavy long-lived charged particles in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 713 (2012) 408 [arXiv:1205.0272] [INSPIRE].ADSGoogle Scholar
  62. [62]
    J. Heisig and J. Kersten, Production of long-lived staus in the Drell-Yan process, Phys. Rev. D 84 (2011) 115009 [arXiv:1106.0764] [INSPIRE].ADSGoogle Scholar
  63. [63]
    J.M. Lindert, F.D. Steffen and M.K. Trenkel, Direct stau production at hadron colliders in cosmologically motivated scenarios, JHEP 08 (2011) 151 [arXiv:1106.4005] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].ADSCrossRefGoogle Scholar
  65. [65]
    M. Muhlleitner, A. Djouadi and Y. Mambrini, SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM, Comput. Phys. Commun. 168 (2005) 46 [hep-ph/0311167] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    CMS collaboration, Search for MSSM Neutral Higgs Bosons Decaying to Tau Pairs in pp Collisions, CMS-PAS-HIG-12-050.
  68. [68]
    ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP, Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    CMS Collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s =7 and 8 TeV, CMS-PAS-HIG-13-002 (2013).
  70. [70]
    CMS Collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).
  71. [71]
    CDF, D0 collaborations, T.E.W. Group, 2012 Update of the Combination of CDF and D0 Results for the Mass of the W Boson, arXiv:1204.0042 [INSPIRE].
  72. [72]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein and L. Zeune, MSSM Interpretations of the LHC Discovery: Light or Heavy Higgs?, Eur. Phys. J. C 73 (2013) 2354 [arXiv:1211.1955] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber and G. Weiglein, Precise prediction for M(W) in the MSSM, JHEP 08 (2006) 052 [hep-ph/0604147] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    Heavy Flavor Averaging Group, Y. Amhis et al., World Average Branching Fraction for BX sγ, August 2012, http://www.slac.stanford.edu/xorg/hfag/rare/2012/radll/btosg.pdf.
  75. [75]
    LHCb collaboration, First Evidence for the Decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].CrossRefGoogle Scholar
  76. [76]
    CMS collaboration, Measurement of the \( B_s^0 \)μ + μ branching fraction and search for B 0μ + μ with the CMS Experiment, Phys. Rev. Lett. 111 (2013) 101804 [arXiv:1307.5025] [INSPIRE].ADSCrossRefGoogle Scholar
  77. [77]
    R. Rattazzi and U. Sarid, Large tan Beta in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    J. Hisano and S. Sugiyama, Charge-breaking constraints on left-right mixing of staus, Phys. Lett. B 696 (2011) 92 [Erratum ibid. B 719 (2013) 472] [arXiv:1011.0260] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    M. Carena, S. Gori, I. Low, N.R. Shah and C.E.M. Wagner, Vacuum Stability and Higgs Diphoton Decays in the MSSM, JHEP 02 (2013) 114 [arXiv:1211.6136] [INSPIRE].ADSCrossRefGoogle Scholar
  80. [80]
    T. Kitahara and T. Yoshinaga, Stau with Large Mass Difference and Enhancement of the Higgs to Diphoton Decay Rate in the MSSM, JHEP 05 (2013) 035 [arXiv:1303.0461] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    J.M. Frere, D.R.T. Jones and S. Raby, Fermion Masses and Induction of the Weak Scale by Supergravity, Nucl. Phys. B 222 (1983) 11 [INSPIRE].ADSCrossRefGoogle Scholar
  82. [82]
    L. Álvarez-Gaumé, J. Polchinski and M.B. Wise, Minimal Low-Energy Supergravity, Nucl. Phys. B 221 (1983) 495 [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    M. Claudson, L.J. Hall and I. Hinchliffe, Low-Energy Supergravity: False Vacua and Vacuous Predictions, Nucl. Phys. B 228 (1983) 501 [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    C. Kounnas, A.B. Lahanas, D.V. Nanopoulos and M. Quirós, Low-Energy Behavior of Realistic Locally Supersymmetric Grand Unified Theories, Nucl. Phys. B 236 (1984) 438 [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J.P. Derendinger and C.A. Savoy, Quantum Effects and SU(2) × U(1) Breaking in Supergravity Gauge Theories, Nucl. Phys. B 237 (1984) 307 [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    J.F. Gunion, H.E. Haber and M. Sher, Charge/Color Breaking Minima and a-Parameter Bounds in Supersymmetric Models, Nucl. Phys. B 306 (1988) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  87. [87]
    J.A. Casas, A. Lleyda and C. Muñoz, Strong constraints on the parameter space of the MSSM from charge and color breaking minima, Nucl. Phys. B 471 (1996) 3 [hep-ph/9507294] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    P.M. Ferreira, A Full one loop charge and color breaking effective potential, Phys. Lett. B 509 (2001) 120 [Erratum ibid. B 518 (2001) 333] [hep-ph/0008115] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    P.M. Ferreira, Minimization of a one loop charge breaking effective potential, Phys. Lett. B 512 (2001) 379 [Erratum ibid. B 518 (2001) 334] [hep-ph/0102141] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Stability of the CMSSM against sfermion VEVs, JHEP 12 (2013) 103 [arXiv:1309.7212] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious: A Tool For Finding The Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].ADSCrossRefGoogle Scholar
  92. [92]
    K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].ADSCrossRefGoogle Scholar
  93. [93]
    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].ADSGoogle Scholar
  94. [94]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  95. [95]
    H.E. Haber, Higgs boson masses and couplings in the minimal supersymmetric model, hep-ph/9707213 [INSPIRE].
  96. [96]
    L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10) unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [INSPIRE].ADSGoogle Scholar
  97. [97]
    R. Hempfling, Yukawa coupling unification with supersymmetric threshold corrections, Phys. Rev. D 49 (1994) 6168 [INSPIRE].ADSGoogle Scholar
  98. [98]
    M.S. Carena, M. Olechowski, S. Pokorski and C.E.M. Wagner, Electroweak symmetry breaking and bottom-top Yukawa unification, Nucl. Phys. B 426 (1994) 269 [hep-ph/9402253] [INSPIRE].ADSCrossRefGoogle Scholar
  99. [99]
    D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211] [INSPIRE].ADSCrossRefGoogle Scholar
  100. [100]
    M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the \( \overline{t}b{H^{+}} \) interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88 [hep-ph/9912516] [INSPIRE].ADSCrossRefGoogle Scholar
  101. [101]
    S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the MSSM Higgs sector at \( \mathcal{O}\left( {{\alpha_b}{\alpha_s}} \right) \), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [INSPIRE].ADSCrossRefGoogle Scholar
  102. [102]
    M.S. Carena, S. Mrenna and C.E.M. Wagner, MSSM Higgs boson phenomenology at the Tevatron collider, Phys. Rev. D 60 (1999) 075010 [hep-ph/9808312] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Jan Heisig
    • 1
  • Jörn Kersten
    • 2
  • Boris Panes
    • 3
  • Tania Robens
    • 4
  1. 1.Institute for Theoretical Particle Physics and CosmologyRWTH Aachen UniversityAachenGermany
  2. 2.II. Institute for Theoretical PhysicsUniversity of HamburgHamburgGermany
  3. 3.Instituto de Física, Universidade de São PauloSão PauloBrasil
  4. 4.IKTP, TU DresdenDresdenGermany

Personalised recommendations