N-point tree-level scattering amplitude in the new Berkovits’ string

  • Humberto Gomez
  • Ellis Ye YuanEmail author
Open Access


We give a proof that the pure spinor superstring theory in a novel infinite tension limit, as was discussed recently by Berkovits, reproduces the tree-level scattering amplitudes of the ten-dimensional \( \mathcal{N} \) = 1 super Yang-Mills in its heterotic version and type II supergravity in its type II version. The Yang-Mills case agrees with the result obtained by Mafra, Schlotterer, Stieberger and Tsimpis.


Scattering Amplitudes Supersymmetric gauge theory 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimension, arXiv:1307.2199 [INSPIRE].
  2. [2]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, arXiv:1309.0885 [INSPIRE].
  3. [3]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. [4]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    F. Cachazo and Y. Geyer, Atwistor stringinspired formula for tree-level scattering amplitudes in N = 8 SUGRA, arXiv:1206.6511 [INSPIRE].
  6. [6]
    F. Cachazo and D. Skinner, Gravity from rational curves in twistor space, Phys. Rev. Lett. 110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    F. Cachazo, Resultants and gravity amplitudes, arXiv:1301.3970 [INSPIRE].
  8. [8]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    L. Dolan and P. Goddard, Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension, arXiv:1311.5200 [INSPIRE].
  10. [10]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, arXiv:1311.2564 [INSPIRE].
  11. [11]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude I. Pure spinor computation, Nucl. Phys. B 873 (2013) 419 [arXiv:1106.2645] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N -point superstring disk amplitude II. Amplitude and hypergeometric function structure, Nucl. Phys. B 873 (2013) 461 [arXiv:1106.2646] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Broedel, O. Schlotterer and S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes, Fortsch. Phys. 61 (2013) 812 [arXiv:1304.7267] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  15. [15]
    C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM N-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [INSPIRE].ADSGoogle Scholar
  16. [16]
    N. Berkovits, Super Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  17. [17]
    C.R. Mafra, Simplifying the tree-level superstring massless five-point amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  18. [18]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [INSPIRE].ADSGoogle Scholar
  19. [19]
    N. Berkovits, An alternative string theory in twistor space for N = 4 super Yang-Mills, Phys. Rev. Lett. 93 (2004) 011601 [hep-th/0402045] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  20. [20]
    F. Cachazo, Fundamental BCJ relation in N = 4 SYM from the connected formulation, arXiv:1206.5970 [INSPIRE].
  21. [21]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    C.R. Mafra, Superstring scattering amplitudes with the pure spinor formalism, arXiv:0902.1552 [INSPIRE].
  23. [23]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, arXiv:1312.3828 [INSPIRE].
  24. [24]
    J. Bjornsson and M.B. Green, 5 loops in 24/5 dimensions, JHEP 08 (2010) 132 [arXiv:1004.2692] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  25. [25]
    J. Bjornsson, Multi-loop amplitudes in maximally supersymmetric pure spinor field theory, JHEP 01 (2011) 002 [arXiv:1009.5906] [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada
  2. 2.Instituto de Física Teórica, UNESP — Universidade Estadual PaulistaSão PauloBrazil
  3. 3.Department of Physics and AstronomyUniversity of WaterlooWaterlooCanada

Personalised recommendations